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Lecture 05 – Coherence 

In the last couple of lectures, we have been looking at the wave properties of light and have defined 

the concept of phase of a light wave. Then based on the phase of the light wave we have said that 

the light waves go through interference phenomenon and by looking at constructive and destructive 

interference we have been looking at how light tends to be brighter at certain spots and not so 

bright at other spots. We took the example of Young’s double split experiment and then we 

extended to multiple slits. 
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And then we came to the conclusion that when you go for multiple slits, we have more number of 

interfering sources, you have more constrained interference criteria which provides you much 

better selectivity in the response. And so we had taken the specific example of wavelength 

selectivity but in general, 
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So even for a constant wavelength you can say by looking at the interference pattern, the 

interference pattern is going to be sharper spatially when you consider multiple sources of 

interference. 

In the last lecture we looked at some examples of this phenomenon. We had seen that the CD has 

multiple grooves which essentially provide the situation of an interference criteria. So you can 

separate out colors and that actually is a subset of larger class of components called diffractive 

components. So just the principle that we have looked here in terms of multiple slits can be 

extended to having optical components which are called diffractive components or diffractive 

optics, which essentially allow you to change the characteristics of light.  

If the light is going in a specific direction, it allows you to bend light or direct light at a particular 

direction. When we look at this interference criteria, it tells you is that you can direct light into 

multiple orders (refer the equation 1). The 0th order would correspond to the same direction that 



the incident light had. But then first order, second order, third order and so on, is going to have 

different directions defined by this  (refer equation 2).  
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So different orders are going to have different directions. You could do some manipulation with 

the phase at the point of the slit, and as part of the tutorial, we have examples where you could 

direct light into a particular order. This is a general criterion where we say that the incident light 

which has a very specific direction is actually diffracted into multiple orders. 

But you could also come up with manipulations at the point of the slits through which you can 

direct most of your light in a particular direction and that is similar to the concept that you might 

have encountered in antennas called phased array antennas. In this case manipulating the phase 

and the amplitude with each of the sub-antennas you can have a very specific radiation pattern. In 

fact, you have a radiation pattern that can scan across different directions just by manipulating the 

phase and the relative phase between the different antenna elements. So similar concepts can be 

possible here as well. Here also you could direct most of your energy in a particular direction and 

it is slightly more advanced concept. This similar concept will be seen some problems of the 

tutorials.  
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We have seen the specific configuration of the multiple slits. The similar principles can be 

extended to, when you consider Fabry- Pérot interferometer. In Fabry Pérot there are multiple 

reflections and all these reflected components are going to constructively interfere at a particular 

point (near the output coupler – refer lecture @ 6:00) which allows light to go through the mirror. 

So you could potentially extend the concept of multiple interference to this Fabry- Pérot case as 

well. Only difference will be that in a case of a Fabry- Pérot cavity, you would have certain 

reflectivity for the mirrors, so the reflectivity in terms of power, and if you want to look at it in 

terms of the amplitude it would be R  for each of the mirrors. So the reflected components are 

going to have lesser and lesser amplitude. So all the interfering components are going to have 

lesser and lesser amplitude and that is different from the case when we were looking at multiple 

slits. 
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When we were talking about a phasor diagram in case of a multiple slits, we have seen equal 

intensity for each of these phasors or equal amplitude for each of these phasors. But if you have a 

configuration like a Fabry- Pérot where you have a reflectivity of mirrors which is less than 100% 

each time it goes through a bounce it is going to lose some of the light. So the phasors are not 

going to be equal, they are going to be diminishing in terms of their amplitude (refer lecture @ 

7:11). So correspondingly you have a slightly different result. But nevertheless most of the other 



principles in terms of the number of interfering sources defining the interference criteria, the 

constraint in the interference criteria, all those things would be same as multiple slits.  
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At the end of the last lecture we were looking at the Michelson interferometer. The Michelson 

interferometer is this configuration over here (refer lecture @ 8:36). Here we could basically split 

the light into two arms. And in the two arms you put a mirror and deflect the light back and if you 

are observing the interference output, that output would depend on the relative phase that the light 

waves in the two arms have accumulated. The constructive interference criteria when the path 

length difference, 
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The factor 2 in the equation (3) is due to the light is taking a round trip. In case of  the multi-slits 

case we said the path length difference has to be m . 

We extend the concept of Michelson interferometer to introduce the coherence of light. To give 

you an idea of what coherence is all about, so far in all our examples we have made two 

assumptions, at least in the case of Michelson one of those assumptions was that we have 



considered monochromatic light. Because we have been looking at all these interference conditions 

with respect to only one wavelength, so this is actually for a monochromatic wave. 

And when we were talking about double slit, we said we have a plane wave that’s incident on this 

double slit. But in reality there is no such thing as a perfect monochromatic source and a perfect 

plane wave source. You may have some light source that is very close to that but not exactly perfect 

monochromatic plane wave. In reality these light waves are polychromatic and these does not have 

absolutely planar wavefronts. 

So what is the effect of these wavefronts on the interference and how do you quantify that? That 

quantification what we are going to see, is through the coherence what we call as the temporal 

coherence or spatial coherence. So let us go ahead and try to define all these terms. 

(Refer Slide Time: 11:38) 
 

 
So let us start by looking at the coherence property of light. And I should give a disclaimer here, 

this coherence property of light which actually leads you towards the quantum optical principles 

of light is a fairly deep subject. As far as this course is concerned we are just skimming through 

the topic just to give you a basic feel for what this is all about. If you are interested, you can go 

into deeper reading of this topic. 

Let us look at the coherence by taking the example of Michelson interferometer. We have a beam 

splitter here which splits light, let’s say in two ways. So you have a light beam coming in that is 



getting split and you put a mirror over here and a mirror over there. It bounces back, this also 

bounce back and then we are observing over here. (Refer lecture @13:00) 

We have not defined many of these optical components and mirror so far. You can say it 

corresponds to a metal coated substrate, so that it can act like a mirror. But there are other mirrors 

called dielectric mirrors. Similarly, with a beam splitter if you want to achieve a perfect 50-50 

split, what you use is known as a dielectric coated mirror. The principles of handling phase come 

into the picture while discussing about these mirrors. We need to track phase as it goes through 

the multiple layers. All these dielectric mirrors will have two materials, Hn  (high index material) 

and Ln  (low index material). If you have alternating layers of these materials, then if a wave is 

incident on it, it is going through reflections at each of those interfaces where the refractive index 

is different.  This is what you call as Fresnel reflection. And all these reflected components are in 

phase, they will all add up together and you will get perfect reflection. All the light that is going 

forward, it is all going to get reflected for 100% reflection. Or you could have lesser number of 

layers through which you don’t reflect all of the light, you reflect part of the light, let’s say 50% 

of the light and the other 50% is transmitted. That will be a partially reflecting mirror. 

So you can make mirrors using some of the principles that we have talked about so far. What you 

have to do is essentially look at what is the relative phase of all these components that are getting 

reflected from the different interfaces. We have a tutorial problem on this concept as well, so you 

can appreciate some of the details of this. You could go to the extent of connecting this principle 

to the Bragg diffraction theory which we had learned in high school. 

As you know if you have a periodic arrangement of atoms, if you come in with x-ray radiation, 

then you have these x-rays diffracted and they all constructively interfere in a particular direction. 

Through that you can possibly tell what is the period of this atomic spacing. So that principle you 

know is not very different from what we are learning here about multiple slit interferometry or in 

this case multiple layer interference. So you can say that this multiple layer interference is actually 

one-dimensional Bragg reflector in that sense. So I am just connecting this to some of the concepts 

you might, we are already familiar with. 



 Coming back to the Michelson interferometer, we define this distance we called as 1d , this we 

called as 2d (refer lecture @17:18) and we were looking at  
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So suppose I am looking at the intensity of light at the output and I move one of these mirrors. 

Let’s plot 2d versus intensity of light. Initially let us say I have this condition that 1 2d d and 

then I start moving one of these mirrors. At this point it is maximum because the phase difference 

is zero and as 2d increases, the plot goes through series of maxima, minima, maxima, minima 

and so on (Refer lecture @19:16). So of course, you can define the next maxima to be happening 

at 2 1 2
d d


  . The minima would correspond to 2 1 4

d d


   and so on. 
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But the key point here is that we are saying that the intensity is going to be constant irrespective 

of whatever the value of 2d . Now we will question this particular assumption. Is this constant for 

whatever is the value of 2d ?  

We will find by examining this closely that you are observing the beating of  1( )U t with 2 ( )U t

. In fact, 1( )U t  and 2 ( )U t are complex quantities, so the beating would correspond to 

*
1 2( ) ( )U t U t and then *

2 1( ) ( )U t U t . We look closely at what 2 ( )U t  means. In this case is 

1( )U t and 2 ( )U t  different? It is different from 1( )U t , as it is going through a different arm and 

then the distance is different. But otherwise is it different? Not really. It came from the same 

source. So, I can basically write  

* *
1 2 1 1( ) ( ) ( ) ( )U t U t U t U t    

When we are making a measurement, we are not making an instantaneous measurement. If you 

have to make the instantaneous measurement, the light frequency at 1 micron corresponds to 

1410 Hz .So when you talk about the time scales, the light, the period with which this oscillation 



happens that period corresponds to some femtoseconds. So we are not doing any measurement in 

femtoseconds. So what we are doing in general is a time average measurement i.e.  
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 This relation *
1 1( ) ( )U t U t   reminds us a correlation. In this case it is the same source, so it 

is basically autocorrelation function. 

So through the Mach-Zehnder what you are really observing is the autocorrelation function. If you 

have a plane monochromatic wave incident on it, then that light wave is going to have a certain 

amplitude. Let us say 0
1 0

i tU U e  . Then we can represent the autocorrelation function as ( )G    

such that 
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You can now define another quantity called degree of coherence, ( )g  which is given by 
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The denominator represents the total intensity. The numerator ( )G   is called as the temporal 

coherence function and we are normalizing ( )G   with the intensity. The degree of coherence ( )g 

is a normalized coherence representation. Let’s see the magnitude of ( )g   i.e. | ( ) |g   for a 

monochromatic wave.  
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( ) 1g    

So for a monochromatic wave ( ) 1g   . For a totally uncorrelated source of light, ( ) 0g   . 

 So we can write  0 ( ) 1g     

( ) 1g   , perfect monochromatic source 

( ) 0g   , perfect incoherent source. 
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If we see the time and frequency domain representation of a monochromatic wave. In time domain, 

it will be nice periodic function with frequency of oscillation as  .In frequency domain, it will 

be a delta function at    (refer lecture @28:42). The perfect monochromatic or ideal source look 

like in this representation. 

But when you look at non-ideal sources or practical sources, in time domain, it will be a non-

periodic function. (Refer lecture 28:56). If you take a Fourier transform, the power spectral density 

is going to look something like this. It has the center frequency in 0 having a width  (refer 

lecture @29:21). When we have a mixture of multiple frequencies, you do not have a perfect 



periodic sort of pattern, you have non-descriptive pattern as far as the temporal behavior is 

concerned (in time domain). 

What we are looking at fourier domain is actually the power spectral density ( )S  . (Refer lecture 

@20:22).  The Wiener–Khinchin theorem (used in communications or signal processing usually) 

says that the power spectral density and the autocorrelation function are Fourier transform pairs. 
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This relation state that the power spectral density and the autocorrelation function are connected 

with each other. So knowing the autocorrelation function you can compute the power spectral 

density. Or conversely, knowing the power spectral density you can compute the autocorrelation 

function. So if you do this inverse Fourier transform, so what you will find is ( )G   (Refer 32:33) 

But when we look at with respect to the delay that we are imposing, you would essentially see that 

this coherence function means that it will actually be maximum when the delay is 0. But it starts 

falling down once you start having a delay. This concept is relevant if we look at the interference 

pattern again. (Refer lecture @33:06) 
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Here we were saying that as you move one of the mirrors, we are trying to figure out how the 

response will be.  And for a monochromatic wave the response will be like this (Refer lecture 

@33:33). That, if you go to the maximum, to the same point as you move 2d  . 

 But for non-ideal sources which are polychromatic in nature when you have frequency spread, 

then the temporal coherence limits your interference. The interference pattern gets modified, the 

envelope of the fringe pattern will look like this (refer lecture @34:48). The maxima and minima 

intensity will not be achieved as we obtained in case of monochromatic wave. This means full 

intensity will not be obtained in maxima, and there will some intensity is obtained in minima 

instead of zero intensity. At some point it will just be the, as if the two beams are not interfering 

at all. In this process, we are actually looking at the autocorrelation between two of the incoming 

wavefronts (Refer lecture 34:53).So as we move the distance 2d , you are like looking at further 

and further out in space or in time. So these two are reversible, so you can go back in time or in 

space and you take different components of the waves from different wavefronts from the same 

source and you are looking at how well they are correlated. And what we are saying is if it is a 

polychromatic source, that correlation holds good only for a certain time or a certain distance. And 

beyond that it will start reducing in terms of the overall contrast between the maxima and minima. 
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And that reduction is essentially defined by the envelope of this autocorrelation function (refer 

lecture @36:06). So effectively what we are saying is when we are looking at the Mach-Zehnder 



interferometer output, let us say we are looking at the plot (refer lecture @ 38:24). Within the 

envelope we have interference pattern. As we increase the 2d , the path difference increases, the 

contrast between the dark and bright fringes changes. The contrast is quantified with visibility 

which is given by 
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The width over which the contrast goes to half is the coherence time (in the autocorrelation plot 

i.e. the envelope) (Refer lecture at 38:30). The coherence time is inversely proportional to the 

spectral width.  
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The proportionality constant depends on the shape of the power spectral density, so it could be a 

fraction but 
1
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 . So larger the spectral width of your source, smaller will be c . 

c is coherence time and in terms of spatial quantities you can define what you can call as 

longitudinal coherence length cl , which is given by 

c cl c      (9) 

where c is the velocity of light in vacuum. So in terms of length it is just directly proportional to 

c . Let’s look at these values of some sources. 



  

As we can see, for the sunlight 2d = 1d  you get to see some fringes, you get to see some maxima 

and minima. But the moment you move even fraction of a micron, you lose all your fringes. So it 

is very hard to make interference fringes with the sunlight. Whereas with the laser diode it is 

3x1011Hz which corresponds to 3.3 picoseconds. Here the coherence length is in the order of a 

millimeter. In case of Helium Neon (HeNe) laser the linewidth is 1MHz which will correspond to 

coherence time of 1 microsecond. For this laser if you take 2d  to 300m, you still have some 

visibility, you can still see some 50% visibility. 

Let me stop at this point. So what we have just now started is quantifying the coherence of light 

and we say based on the fact that it is typically a non-monochromatic source that we are dealing 

with in practice, the coherence or the range of delays over which we can see interference between 

these two constituent waves is limited and of course what we are saying is that coherence time or 

the coherence length is inversely proportional to the width of the source spectrum.  


