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The learning outcomes of this course are to:

1) Identify the fundamental principles of photonics and light matter interactions.

2) Develop an ability to formulate problems related to photonics, photonic structures,
processes and analyze them.

3) Identify processes that help to manipulate the fundamental properties of light.

So let us go back and have a quick recap of where we were yesterday.
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We started with a general statement, as to why we should be interested in photonics. We
listed down a number of applications where photonics play a central role and then we went on
to look at how we try to analyze the photonic processes.
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The photonics processes can be analyzed progressively using the following methods:

1. Ray optics — which uses Fermat’s principle that light travels in straight lines
Ray optics cannot explain concepts like wavelength and phase of light, so we go in for

2. Wave optics
Since Wave optics cannot explain polarization, we go in for

3. Electromagnetic optics — which started with Maxwell - making his declaration around the
mid 1800s- that light travels as electromagnetic waves.
And as this did not explain quantization, we finally have

4. Quantum Optics/Photonics - Planck actually came up with this paper in 1900, that
essentially was saying that light emission and absorption are quantized. And that was
followed by Einstein's observation, that light itself comprises of quanta of energy which

later on was termed as photons.

So, we will start with examples in ray optics and then proceed to examples with wave optics

and beyond that, we will get on to electromagnetic optics and, eventually to quantum optics,.
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need an optical probe for doing endoscopy. It is fairly simple to design this optical probe.

We just need to know the law of reflection and law of refraction.

Endoscope:

In this structure, you have a material with refractive index n; which is surrounded by another
material with refractive index n,. We could have total internal reflection at the interface if the
angle at which the light ray hits the interface is greater than the critical angle. Now, if you
have a consistent structure where you have this interface between n; and n, and those two
interfaces are parallel to each other, then we will have consistent guiding of light within this
structure.

What we are typically interested as far as the endoscope (a light guiding structure) is
concerned is -what is the maximum cone of angles that we can pick up using this structure?
(Refer Slide Timeu05:16 to 05:56)
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For total internal reflection to occur, the incident angle should be greater than the critical
angle at the interface between n; and n,.
And then if you trace it back, as far as launch of light into this structure is concerned, what

we will have to essentially look at is what is happening at this interface between npand n;.
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Now, typically the refractive indexnoforthe outside medium is air and then you are going into
glass material, with refractive index n;.

You apply Snell's law over here andtry to find out the maximum angle which can be
supported at this interface such that the light is guided through the structure. So the limiting

condition for such a guiding is 6:=0;
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We need to have an incident angle greater than 0. for light to be guided, and if you look at
Snell's law at this particular interface, for very small angles of 6o, for example the limiting
case is where 6, is going straight down this dotted line over here, the light ray is going
straight down, there is no problem. Light will go straight through this wave guide.
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And as you increase 6p, you get to a point where your angle at this interface is going to
become smaller and smaller.
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And if the angle 6, isbecoming less than O, then there is no guiding of light. So the limiting
condition would be 0; = 6.



So, if I am able to find the corresponding angle 6o, then | would say that anything within that
cone of angles defined by 6y, is going to be guided in this structure. Anything outside of 6y, is
going to be such that 6:<0c, then it is not guided by this structure.

So this cone of angles that is allowing light to be guided in the structure is called the

numerical aperture of this endoscope.

(Refer Slide Time 09:08)
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So what we are actually trying to get to is - what is the numerical aperture of this light guide?
To do that, we apply Snell's law at the input interface, so
No Sin Bo= Ny sin 61 where 01 is the refracted angle.
you would realize that if the angle made between nj; and n; is 6. this 6, has to be m/2- 6
(Refer Slide Time 09:43)
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So the RHS has to be n; sin(n/2-0¢).

Since sin(m/2-0;)=cos 6, and cos 6. can be written in terms of sin 6. as
cosf. =1— sin?0.we get

No sin 8o = 11— sin?e,

We saw in the last lecture that sin 6. = ny/ ny. So by substitution, we get
No sin 6o =NiV1— (ny/ ny)?

and if we take ny in common, and consider ng corresponds to air, i.e no = 1 then we get this

simple expression for sin 6,

sin 0y = \n;° — n,?

What this tells you is that if you want a very large numerical aperture, what should you have?
What do you want from an endoscope? Normally you want a very large field of view, so you
can see things on either side over a fairly long angular spread, right?

So how is it enabled as far as the structure is concerned? nihas to be very much larger than n,

ni>>nNo.




So if we have a large index contrast between the two media, you can essentially support a
large numerical aperture. So how is this realized?

You basically have a cylindrical wire; with refractive index ny, let us say it is made of glass.
And you coat it with a polymer, with a much lower refractive index.

So glass, you know you say refractive index of 1.5, and that is actually a very loose
definition, because that is what you hear in high school textbooks - that glass has refractive
index of 1.5, water has refractive index of 1.33 and so on.

But you have to take that with a pinch of salt, because in reality, that refractive index is
actually dependent upon wavelength. Remember this thing about how you form a rainbow?
How do you, get a rainbow naturally?

Sunlight consisting of different colors, is going through this raindrop, which can be modeled
as a prism made of water. Water essentially has a different refractive index, a slightly
different refractive index for each of those colors. So when you apply Snell's law, each of
those colors separate out, in terms of the angle of refraction, and that is essentially what you
see as dispersion which causes the rainbow.

So, in general, that is the key thought that you should have in mind - that the refractive index
of material, or in more basic terms - the permittivity of the material, the dielectric response of
the material, is frequency dependent or wavelength dependent or, in layman's language -
color dependent.

The refractive index of a material is dependent on Color

So, it depends on the color as to what is the refractive index. But nevertheless, if you say that
you have a glass central structure surrounded by a polymer structure which is of much lower
refractive index, then you can make an endoscope with a very large numerical aperture, with
a very large field of view. So, we have now seen how to use Ray optics principles in
designing the optical probe of the endoscope.

With ray optics we just saw how to design an endoscope. We can explain dispersion in a
prism, You can actually do optical system design,

(Refer Slide Time 14:48 to 15:14)
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Which consists ofArhuItipIe lenses, multiple mirrors and so on. You can do all that optical
system design and go all the way up to designing a telescope using Ray Optics.

A telescope is nothing but a series of lens elements that are put together. You can go all the
way up to designing the Hubble telescope.

(Refer Slide Tim? 15:46)
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You know what a Hubble telescope is?

This is the telescope that people put in space, which is capturing images of the galaxy, deep
out in space. So something as sophisticated as that could actually have the basic design of the
telescope which can be achieved by just ray optics principles. That is the power of
considering light as something that just travels in straight lines and you are able to deal with
how it propagates through multiple interfaces.

So let us get a feel for designing a lens system. How do you use ray optics to see how light

propagates through the systems?



So let us say you have an optical system, one of the key things that you define is an optical

axis, basically the central line that joins all the optics within that system.
(Refer Slide Time 17:04)
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So let us say, it consists of a lens here, another lens
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over here, let us say those two are what are called biconvex lenses
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and this is actually a biconcave lens and may be another lens

(Refer Slide Time 17:32)
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over here, right.

So if you want to analyze a system like this, what you want to know effectively is, if I
consider a plane over here and a plane

(Refer Slide Tim? 17:44)
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over here, Ok | want to look at a ray that is incident on this plane.
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What happens to the ray as it pfopagates through the system and specifically 1 am interested
in how the

(Refer Slide Time 18:00)
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ray comes out of that optical system, right? That is a typical problem that we look at. So what

you could do is define the distance from the optical
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And over here
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the system with an angle 02. So the idea is, if you are talking about a linear homogenous
system, where it is homogenous within the lens, or within the propagation between the lenses
it is all homogenous medium. If you consider a medium like this, you can actually write the
output y- in terms of the input parameters.

Basically you say it has some dependence on where the ray is entering the system, so y; and
it has got some dependence onwhat angle the ray is entering the system, 6.
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Similarly if you want to find 0,, that again has a linear dependence

So you have
0,- C yit DO,
(Refer Slide Time 19:46)
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Ok to the point that you can write this in matrix form( y2 62 ) iswhat you
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want to find out, ( y'1

defines the optical system



So, in matrix format
(y2 ©2)=(ABCD)( y1 ©61)
(Refer Slide Time 20:06)
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So if you can model thé propégation of a light ray within each section of this optical system,
through each surface of this optical system then, essentially let us say this is, what you call as
the ray matrix
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and the ray matrix is actually going through multiple sections, multiple surfaces and each one
of those has its own(4 B C D )Matrix
So, let us say there are n such occurrences, M, M .1, and so on, up to My, this would be the

effective matrix that defines this entire thing.

(Refer Slide Time 21:06)
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Just take one quick example and see how this works. I will take a very simple example in the

interest of time. So let us say

(Refer Slide Time 21:26)

J DM P (AN AF AR 23T Ny
L L1 | .

| just have a ray that is going straight through the system, Ok. | want to define how the
propagation happens through free space -Without any elements coming to the picture. So

how would the (A B C D )Matrix look for, something like this?

So | can essentially write, so this is yi, this is y 2,
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this is O4, this is
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So we know that ©,-061,(as it is free space)
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and what is y,? So whatever this distance of propagation
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is, let us say that corresponds to d, so you essentially say this is going to be given by
y1+d ©1and ©,-0,

So we have

y2=y1+d6;
0,=0+ O




So the(A4 B € D )matrix corresponding to this is A corresponds to value of 1, B corresponds to
value of d, that is the distance of propagation in this medium. C is 0, Ok that is a coefficient
of y 1 andthatis 0, and D is 1. So the matrix for

(Refer Slide Tim(? 23:14)
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So you can do this for a lens as well, Ok and especially, there is one approximation which
becomes very handy in these sort of situations. This approximation is called the paraxial

approximation.
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Par axial, right so it is something to do with axis, so what does paraxial mean? It essentially
means that we are considering rays to be having a very small angle with respect to the optical
axis, Ok

So in the paraxial approximation, if you write sin ©, when O is small ,

the value of sin ©= O, so sin© can be approximated as ©.
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So how does that help? Because as you are propagating through this, you know optical
system you are encountering surfaces and at each surface you are applying Snell's law. Snell's
law says

N sin®; = Ny sinO,.
But you do not want to put all these sin, cos things within this matrix. So Snell's law will
become n; ©;1 = n, O,in the paraxial approximation.
(Refer Slide Time 24:52)
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Then it is easy , form a corresponding matrix and then
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go through this thing. So what is the disadvantage of this? Obviously you cannot account for
rays that are making a very large angle with respect to the optical axis.

So if you have a very large numerical aperture - like what we were trying to do with the
endoscope - that cannot be modeled here.

But if you are talking about modeling a telescope, which is seeing something that is
happening, thousands and millions of kilometers away, light coming from there is going to be
fairly aligned to the optical axis of your telescope.

So paraxial approximation works very well if you are looking at really distant objects.

Can you apply this for the microscope?



Probably not - you are trying to magnify a small object and you have a very large spread of
angles within that and so it is not easy to apply to a microscope,
So that just gives you a general thought of how far you can take ray optics, Ok. Any

questions before we move on?

Professor: Why is the...?

(Professor — student conversation starts)

Student: 0:26:30.2

Professor: So all of these, once we put it this form, all of these are linear transformations,
right, so the entire system becomes a linear system. And we are considering homogenous
material so, so yeah we are taking essentially a linear response from the system. That is the
basic assumption, Ok.

(Professor — student conversation ends)

So let us move on and

(Refer Slide Time 26:59)
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And that actually takes us back to this tiny tit bit that | gave at the end of the last lecture, what

did we do? What did | ask you to do? Right, there is one word to explain that.
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Right, so diffraction of light is what is happening.

So what is diffraction? Now whatever we have been saying so far or whatever we have been

seeing so far is that when you have a large opening, you can use ray optics
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(Refer Slide Time 27:59)
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to see what is happening on the other side, right. And when | say large, what exactly do 1

mean? Large is how large?

(Professor — student conversation starts)

Student: comparative to wavelength 0:28:14.4

Professor: Very good, so it is comparative to the wavelength of light.
(Professor — student conversation ends)

So if you have an opening with,
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let us say d as the dimension that is far, far greater
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than the wavelength of light, right, so you can explain everything by ray optics. But what
happens if you have a very tiny aperture,
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very small aperture so in this case d approaches the wavelengthi, Ok
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As d approaches A there is very little light that is going through but we are not worried about
how much is the intensity of light. We are worried about characterizing the property of light

beyond that point. And this is what Huygens did, you know much earlier, several centuries
ago.

He actually said that light

(Refer Slide Time 29:25)
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propagates through the structure as waves. So his hypothesis at that particular point was that
light propagates as waves very much like a pebble dropped in water, right, so you see waves
that are

(Refer Slide Time 29:51)
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going out from th point where the pebble has gone through the water surface.

And another example could be sound from a loudspeaker. So you have this loudspeaker
blaring out and you can hear that sound over a very wide region because, you know sound is

propagating as waves from that source and it is, it is actually spreading around.

So ray optics breaks down, when you consider features that are comparable to the wavelength
of light. That is a key thought that you want to carry on.

Ray optics is limited when light is actually having to deal with structures where the
feature sizes are comparable to the wavelength of light.

So you have to jump over to wave optics and you need to understand how light propagates as
waves. And any problem where you are dealing with propagation of waves, where does it
start? Where would you start any formal problem which is dealing with waves, propagation

of waves?



The wave equation, right.
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So what does the wave equation tell you?
Basically VU, let us say U corresponds to the description of the light wave.
V'U - 1/c (8% U/st?)=0

That is your wave equation.

(Refer Slide Time 32:01)
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Now of course you are familiar with this in a slightly different manner.

Lot of you would have seen this in electromagnetics. In electromagnetics you would have

seen that U is replaced by E or H,
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electric or magnetic field. So if instead of U, if you substitute E or H you get the wave
equation which, from Maxwell's equations, you know couple of steps you get to the wave
equation. So that is the same format that we have.

Ok there is something, one approximation, that you can take at this point in terms of finding a
solution for the wave equation. And that approximation is associated with the general

observation that when you look at waves, these waves are normally periodic in nature, right.

So, when you drop a pebble in water, you see these waves are essentially periodic in nature.

So you can actually go on to describing them as time periodic signals
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and what is the advantage of looking at them as time periodic signals?




If I am looking at the solution for U in terms of, let us say Cartesian coordinates X, y, z and t,

the time dependence, then this can be written as U of x, y, z and then the time dependence

comes out as .
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Now, &' = cos(at) + sin(wt)

So it is basically representing a sinusoid.

So we are saying it is basically a time periodic signal which corresponds to a sinusoid and we
represent it this way. What is the advantage of representing this way?

If | differentiate this with respect to t, then that will give me jo, and U will remain the same.
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And if | want to do the second derivative that is nothing but —@°
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So instead of this second differential 8% /5t> here, | can substitute with —»? which gives me
V*U + k?U = 0 where k = w/c

So this is my wave equation for a time periodic case
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® is nothing but the angular frequency, so you can write @ = 2xf/c
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andwhat is ¢ /f ?
c is the velocity of that electromagnetic wave, sorry in this case this light wave and

f is the frequency,
so ¢/ f would correspond to A. So you can write k =2z/ A
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So what does that mean?

Essentially if I look at the solution of this, let us say, this corresponds to a wave that is

propagating in the positive z direction,
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then the solution of this can be written as U(r) where r can be some radial parameter, this is
given by U(r) = A (r) e %!
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So how do I get minus j k z? If you
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go back here this Vo is actually a Laplacian, Ok. So in Cartesian coordinates this corresponds
to 8%/5x° + 84/8y*+ 8%/82 right?
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Now if | say it is propagating along z and | say it is actually propagating with very little loss,

Then we can say that in the z direction, there is only an accumulation of phase in that term
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And that is what we get over here.

So if I actually look at this in the z direction what 1 would find is, this is basically you are
looking at U (r)
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what you would find is it is
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actually varying in some sinusoidal fashion and this, from where it goes, from 0 and goes to 0

again, what does that correspond to, in space? - Wavelength
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and over a wavelength how much phase does it accumulate? It accumulates a phase of
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2 7 radians.

So effectively what we are saying is this term is
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representing the phase that the wave accumulates as it is propagating, Ok.
And this €' term is actually a fairly boring term. |1 mean it is representing the time

dependence but it is actually periodic waves. So you know that is not changing when it is

going through material, right -linear material.

So we can choose to just consider the wave as a phasor. So U can be considered as a phasor

and if it has an amplitude A, then, U can be represented as A € jo
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Ok because we are mterested |n tracklng the phase which actually is changing during the
propagation of that light.

So | can just represent this in a very simple form, the phasor form and U in general can be

complex quantity. So you can represent the, plot the real part of U

(Refer Slide Tlme 40 19)

e J 7 YA AT X3-T i o
lllllll. T1) .
o )
0@ = A’/ ¢ 1/\ /‘
/ [,
Z
P 9 U
¢
o Photor = Ae
PR
NM‘M
Refy) Phaus, 28

against the i |mag|nary part of U. So when | am plotting like this, what type of plot is this? It is

the plot in the complex plane. What do we call this?

You have heard of a polar plot?



(Professor — student conversation starts)
Student: Polar plot

Professor: Right, so you essentially have a polar plot where this is a phasor with

(Refer Slide Time 40:48)

DR [ 9 Clone PARAR 2T
HAENEEEEN Nim .

/
z
e 28 U
.
0 - Photor = Ae
—a
Re o) Phaie, 28

an angle ¢ and,
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you know it has got a magnitude A.

(Professor — student conversation ends)



So you can represent this in terms of a phasor. And now if you want to define propagation we
know it is actually going through a sinusoid, so you can say that as it propagates it
accumulates phase, right, and it is basically going round and round in this phasor.

So it basically goes around and it is repetitive, you know just indicating that it is actually a
time periodic function, right. So now with this, we can go ahead and explain what happens
when 2 waves come together, which is what, it is amazing this experiment was done in 1801,

as early as 1801 so this person Young, Thomas Young did this experiment, right.

Thomas Young
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did this experiment where he basically
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separation corresponds to d and then he was observing the propagation of light throug‘h this.

So you have a wave this is incident
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on this aperture. So what happens, and each of those slits were quite small, small in the sense

it is approaching wavelength. So effectively what you expect is
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this goes on like this and then similarly you have another wave,
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it is similar to, in a bucket of water where you drop 2 pebbles.

Both the pebbles hit the water at the same time and you have these waves that are coming
across and then they, they add with each other at some point, right. And so then they may

cancel each other at some other point.

So let us say this is our observation plane. So what do we see over here, so let us actually

define an optical axis that goes through this
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and what you see on this side is a fringe pattern like this
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which goes to a maximum and minimum alternatively, Ok. So how do you explain this fringe
pattern?

Essentially if you look at the total intensity over here, let us say that corresponds to |
| corresponds to,
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Let us say the field is represented by U so the magnitude of the field and square of that

corresponds to | but this is now represented by two different waves, one wave which is
represented by U; is A; &%
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So U is consisting of contributions from both those waves so U ; plus U »,
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and both are complex quantities, right so when you do this square what you get is U;?
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i.e we get U12+ U, 2+( U, u 2*+ U1*U 2)
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because we are looking at the conjugate of U », right

And similarly the other term is going to be 2,/T;7, e '~
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So those are going to be the two beat terms and you can simplify that and |1 am going to slide

over here to do this. So I can write my total intensity I now. So it has got a common beat term

root of 2,/I,1, and then you are adding these two terms,e JOT=82an4 jts conjugate, right.

So when you add those two what do you get?
So €% = cosp + J sinB right. So you are going to get, sorry I made a mistake here, so there is
no 2in the conjugate terms over here, that is just \/I;1, ,right
SO U+ U (UsU2+ U'Up) = i+ 1+ VT, @9 P4 JTT, e7¢1 792
1y + I yTiT, (€0 94 @012

=l + 1" JII; *2 cos(¢l — 2)
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So when you add these two, you get a 2 cos term because the sin terms are canceling each

other.

So you have

= 13+ 1+ 2 JT11, cos(dl — §2)
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Oksoifl =1, let us say is equal to lo then what do you get?
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So,when l1=1,=1g

| =lo+ 1 o+ 2 /Ioly cos(dpl —¢2)
So,

I = 2% 1y (1 +cos A 9),
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right. So that is in effect
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I will just leave you with this thought, essentially if you plot, you know this
I as a function of A ¢.
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then what you get is, it basically goes through, you know sinusoidal function when A ¢is 0,
then this corresponds to the maximum, that corresponds to 2lo, and then it is going to become

a zero at some point, go to the maximum, go to the zero at some point and so on.

Where does it go to zero?

(Refer Slide Time 48:53)

¥ ol
J
2 0 = AW ¢

J
0 = Photor = Ae

1901 , Tronns Towry Olgsiatins

1: Il g e b)

ey |||

I becomes 0 when A ¢= m, right
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and similarly you know when A ¢= 2 it will go to the maximum
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and 3z itwill go to minimum
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and so on. So what does that tell you?

These are representative of constructive interference
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So constructive interference happens, well let us first finish destructive interference.

Destructive interference happens when A ¢ equals to odd integral multiples of m,
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andconstructive interference happens when A ¢ equals to even integral multiples of .
Key thought:
Destructive interference happens when A ¢ equals to odd integral multiples of m,

Constructive interference happens when A ¢ equals to even integral multiples of .

So that is of course, you know that intuitively but if you go through the wave picture, you
know you can show this. But the idea here and the idea that we are going to propagate
forward is that, to check this constructive and destructive interference criteria, you dont have

to model that entire wave, Ok.

You just model the propagation phase that it accumulates. And you just compare the phase
between the light beams that are coming together, and based on that you can actually see

constructive and destructive interference.

And just working backwards, it all started with saying that light has this, when light
approaches features whose sizes are comparable to the wavelength of that light, then, it

actually exhibits wave phenomena which means that it undergoes this diffraction.

It actually bends around these apertures and that can give you, his sort of things where, once
you consider them as secondary wavelets those wavelets can come together and interfere with

each other and it can give you constructive and destructive interference.
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For those of you that are taking this online course we will have a demo of this experiment
which looks at diffraction of light and using the property of diffraction of light how to

measure certain feature sizes.

So that is what we are going to see and moving forward, going towards next week we are
going to look at this in little more detail and we are going to look at something else that is

very important, which | have not touched much here, that is - the property of the light source.

So you start defining that, for all this to happen the way it is projected - you need to have a
coherent light source. So then what is the meaning of coherence? How do you quantify
coherence? You know those are the things that we are going to see in the upcoming week. So

let us stop with this point, Thank you.



