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Hello and welcome to lecture 14 of Analog Integrated Circuit Design. In the previous

lecture, we tried to make a better opamp and we were better opamp through the analysis

to see whether it is really better or not. 
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And the  topology of  the  opamp that  we came up with  was like  this,  the  first  trans

conductor converts the input voltage to a current and that is passed through a current

control voltage source made using a second opamp which is simply this Gm 2 and CL

and the current to voltage conversion happens because of this C that is connected from

the input to the output of this opamp.

This is basically a current controlled voltage source of a trans impedance 1 over SC. We

derived the transfer function of this opamp and we saw that the transfer function has 1, 0

and 2 poles  and we were  trying  to  make intuitive  sense  of  the  pole  values  that  we

obtained and to do that what we also did was we removed this C and evaluated the pole

values which turns out is very easy to do Go 1 by C 1 and Go 2 by CL ok. 
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Now, when we do have the C, we will get these pole values; this complicated thing here

and that complicated thing there and this first one, we made an intuitive sense out off by

saying that it is Go 1 divided by some other capacitance. Initially we had Go 1 by C1.

Now, we  have  Go  1  by  C1  plus  Miller  multiplied  C  and  we  also  saw why  Miller

multiplication happens.

Similarly, now for the second pole it is Go 2 by CL. First of all even the numerator has

changed  it  is  Go 2  plus  some other  terms  which  represent  conductances  and in  the

denominator we have CL plus all of this stuff. So, does this make sense? Indeed it does

as we will see shortly.
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So, again let me repeat the opamp that we have Gm 1 Go 1 C 1 Gm 2 Go 2 and CL and

we have C from there to there ok.

So,  now originally  the conductance  here was Go 2;  now it  appears  to  be something

different. Originally, the capacitance here was CL. Now it again appears to be something

different ok. So, again what we can do is to examine the network around this and you

also know that poles are characteristic of a circuit, they have nothing to do with where

the input is applied. So, we can examine the circuit with a 0 input and determine the

poles.

So, when we have 0 input this transconductor of Gm 1 is as good as not being there. So,

the circuit we have is something like that ok. I will draw only the capacitors C C 1 and

CL and I do this and I also try and see what is the capacitance associated with this node

that is from this node to ground and I do this because this is where Go 2 was right. This

is where Go 2 is. Originally, we had only Go 2 and CL from this node to ground. Now,

we have some conductance and some more complicated network of capacitances, but it

is not all that complicated; all we have is this CL in parallel with the series combination

of C and C 1.

So, what does that give you? The total capacitance will simply be CL plus C C 1 by C

plus C 1 and if we go back to the expression you see that the denominator is exactly that

it is simply the load capacitance plus the series combination of C and C 1 that is all ok.



Similarly, now the conductance the term in the numerator seemed to contain some Gm 2

ok; whereas, Gm 2 is the transconductance. How did this happen? I think all of you are

aware that you can take a trans conductance Gm 2 or a voltage controlled current source

and  make  it  appear  like  a  conductance  using  feedback  ok.  What  does  the  trans

conductance do?.

If I have some voltage here, it draws a current Gm 2 times V.  If I connect an input and

the outputs together, what does it  mean? If I have a voltage here,  it  draws the same

current from that voltage and what is that? That is nothing but a resistor or a conductance

ok. If you have a voltage and you are drawing there is an element which draws a current

that is proportional to that voltage that is nothing but a conductance.

And the conductance of this is Gm 2 or the resistance is 1 over Gm 2 ok. So, something

like this must be happening that is the transconductor is in feedback and that is why we

are ending up with a conductance which has a term containing the trans conductance Gm

2 and clearly there is indeed feedback here, you see that there is feedback with C and C 1

around Gm 2 ok.

Now, I will draw only that part of the network ok. If I apply a voltage V, the voltage here

will be V times C by C plus C 1 ok. It is simply a capacitive division of the voltage V

and the current drawn here will be that voltage times Gm 2. So, that is nothing but C by

C plus C 1 times Gm 2 times V.

So,  clearly  this  entire  network  as  far  as  the  contribution  of  the  transconductance  is

concerned looks like a conductance of that value ok. So, the transconductance because it

is in feedback contributes a conductance of C by C plus C 1 times Gm 2. In this case, it

is divided Gm 2 because all of this way was fed back to the input. Here only a fraction of

V is fed back to the input.

So, it is smaller than Gm 2, but none the less are related to Gm 2 ok. So, that is the

conductance contributed by Gm 2; in addition to this, you have Go 2 itself over there. So,

we expect that we will have C by C plus C 1 times Gm 2 plus Go 2 and indeed if you

look at the expression we have Go 2 plus the effect of Gm 2 being in feedback ok.

Now, we also have this extra term because what we have here is not only C 1, we have

Go 1 in parallel ok. So, that gives you some extra terms because in term Go 1 at all, you



would have only this capacitive network. We also have Go 1 here and that gives you

some conductive portion which is related to Go 1 ok.

But typically you expect that Gm 2 is much more than Go 1 and Go 2. So, in fact, the

dominant conductance is expected to be this middle term here ok, this one alone and the

other  2  will  be  smaller  ok.  So,  although  again  whereas,  the  expression  looks

complicated; it is very easy to make intuitive sense out of it.

It  is again some conductance by some capacitance the conductance happens to come

from the output conductance of the second stage as well as the trans conductance being

in feedback. Similarly, the capacitance comes from the load connected to the second

stage which is CL plus the series combination of C and C 1 because that is how they are

connected in the circuit ok. Also another thing, we observed was that this P 1 which was

minus  Go  1  by  C  1  without  C  moved  to  a  lower  frequency  because  the  apparent

capacitance increased.

Now, what happens to P 2? It is Go 2 by CL and here, we see that both numerator and

denominator  have  changed.  The  numerator  has  increased,  the  denominator  also  has

increased. But it is important to keep in mind that Gm 2 is expected to be much much

more than Go 2 ok.

In fact, that is how you get gain. The gain of the second stage is Gm 2 by Go 2 and you

expect the dc gain to be at least 10, if not in the many tens or hundreds ok. Whereas, the

capacitance has become CL plus some value which you generally expected to be of the

same order of CL, same order as CL or even smaller ok.

So, the denominator increases, but only modestly; the numerator increases enormously.

So, it turns out that this P 2 moves to a high frequency compared to the case where we

did not have a C. We considered the case without C only because the poles were easy to

calculate and also it turns out that it is a common scenario, you have 1 amplifier after

another and if you cascade a number of amplifiers you get a number of poles from each

amplifiers output ok.

Now, in our case we have 2 amplifiers 1 after another and our opamp looks like such a

structure with 2 amplifiers and a capacitor connected from the input to output of the

second stage and when you do that it turns out that 1 pole moves to the lower frequency



and another pole moves to a higher frequency. So, such a thing is known as Polesplitting

ok.

So, it turns out that it  is. In fact, a useful thing to have when we are trying to make

opamps because after all what will we want? We wanted the opamp to behave like an

integrator that is a single pole system and we also saw from stability criteria that if you

have extra poles at all they should be at much higher frequencies.

Now here, in this case what happens is one of the poles moves to higher and higher

frequencies and that is a good thing for an opamp, as we will see also in future analysis

ok. So, in summary, the new opamp that we came up with as 2 poles and a 0 and the

poles are given by these expressions and the 0 all we already determined, it is at plus Gm

2 divided by C ok. 
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So, this because it has 2 transconductance stages one after another. It is known as Two

stage opamp and our earlier opamp which has a single trans conductance stage loaded by

a capacitor, this is known as a Single stage opamp. And in each of these cases, we could

use voltage buffers after these opamps, but like I mentioned earlier voltage buffers are

hardware to make in the CMOS technologies especially, with low voltages, low supply

voltages. So, we typically tend to use these opamps without explicit buffers.



These things will become clearer when we come to circuit realization of these opamps

and this has 2 poles. I will write only the approximate values here. It also has a 0 which

is at plus Gm 2 by C; whereas, the single side opamp, if you recall it has a single pole at

minus Go 1 divided by C ok.

Now, what is the unity gain frequency of the single side opamp? That is nothing but Gm

1 divided by C and what is the unity gain frequency of the 2 stage opamp? It is also Gm

1 by C because after all  recall  how we came up with this topology. We have in this

transconductance Gm 1, whose output current is passed through this capacitor ok; by

putting the capacitor and feedback around a second opamp.

So,  that  we  for  my  current  controlled  voltage  source;  So,  the  approximate  transfer

function from the input to the output is still Gm 1 by S C times Ve. So, that means, that

the unity gain frequency here is Gm 1 by C as well ok. Now this can also be verified

very easily.
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 If we draw the magnitude response of the 2 stage opamp, it will have a dc gain of Gm 1

Gm 2 by Go 1 Go 2 which is the product of the dc gain of the 2 stages.

And there is a pole and at that point, there will be a breakpoint and the gain drops at 20

dB per decade ok. And then at some frequency, there will be a second pole P 2 and then



some other frequency, there will be a Z; there will be the 0 Z 1 ok. I have assumed that P

2 is smaller than Z 1 which may or may not be the case.

Now here you see that the behaviour is first order all the way down to P 2 and this is the

0 dB line. I am assuming that their behaviour is first order all the way down to the 0 dB

line. This way anyway no has to be true for good stability ok; from our earlier study of

bode plots and quits criteria, we have seen that the system has to maintain, the loop gain

has to maintain first order dependence on frequency all the way down to unity loop gain

frequency.

Now, if we place this opamp our Two stage opamp, in unity feedback. The unity loop

gain  frequency of  this  feedback loop is  nothing but  the unity  gain  frequency of  the

opamp itself. So, we will assume that we have made a unity feedback configuration like

this.

So, in this case, the unity loop gain frequency will be the unity gain frequency of the

opamp  and  first  order  behaviour  has  to  be  maintained  all  the  way  down there  and

because this is first order behaviour, this frequency is easily seen to be the product of this

dc gain and this pole times the magnitude of P 1 and if we evaluate that P 1 is nothing but

Go 1 by ok.

So, that cancels with that and this approximately cancels with that and this C times Gm 2

by Go 2 plus 1 is much larger than C 1. So, this C 1 can be neglected and then, there is

Gm 2 by Go 2 term cancels Gm 2 by Go 2 plus 1 because Gm 2 by Go 2 is a number that

is much more than 1. So, the unity gain frequency approximately is Gm 1 by C ok.

Now, remember this is the unity gain frequency that we were trying to implement. So, it

is not surprising at all that we get the same number, but just wanted to show that when

you calculate it, without knowing anything about the circuit; you simply calculate it as a

product of the dc gain and the first pole assuming that first order behaviour is maintained

all the way down to 0 dB gain, you will get the same answer ok.

And it is nothing but the unity gain frequency of the single stage opamp we start off with

ok. After all we made this as an improvement to that one without changing the unity gain

frequency ok. Is this fine? Now, so, what is the advantage of this after all? The advantage

of the Two stage opamp is that the single size opamp has a dc gain which is Gm 1 by Go



1; whereas, the 2 stage opamp as a dc gain which is Gm 1 by Go 1 times Gm 2 by Go 2

ok.

So, the dc gain of this can be significantly larger than a dc gain of that one; both have the

same unity gain frequency and this has a single pole whereas, this has multiple poles and

zeros. So, while stability is unconditional with a single stage opamp, we have to worry

about the stability of the 2 stage opamp because it has multiple poles and zeros. And as I

have mentioned earlier, stability for us not only means not oscillating.

It is not just that; it also has to be well behaved we should not have ringing and so on in

this step response ok. We will see the conditions for that soon, but the advantage is very

clear. We get the dc gain of the single stage here; whereas, we get dc gain of 2 stages and

we have designed it. So, that the unity gain frequencies are the same. So, we have to

compare the other things ok. 

Now, besides this there is also another advantage of using a 2 stage opamp compared to a

single stage opamp. Let me copy these things over.
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And that has to do with what happens when the load is resistive that is let us say we have

an external load which we also connect to this and connect to that one ok and in general;

when you do that it is expected that the load conductance GL is much more than Go 1

that is R L is much smaller than Ro 1.



Similarly here, GL can be much more than Go 2 ok. So, the dc gain in this case will be

Gm 1 by Go 1 times Gm 2 by Go 2 plus GL. Similarly here, the dc gain will be Gm 1 by

Go 1 plus GL and GL will dominate Go 1 GL will dominate Go 2 there ok.

Now, clearly you can see the problem here. In case of a single stage opamp if you do

have a  resistive  load,  you have  to  make this  Gm 1 much much more than  the load

conductance. So, that you get a significantly less dc gain ok. The dc gain required may

be of the order of thousands or even higher and when you try to implement a large value

of Gm you end up dissipating a lot of power and that is a serious problem for circuit

design.

Here, what can be done is Gm 2 does not have to be much much more than GL. It has to

be more than GL. But not by factor of 100 or 1000, but it could be more by only a factor

of 10. Let us say that is because you can still keep Gm 1 by Go 1 very large and get a dc

gain that has a large respectable value ok.

In other words, you place the burden of getting a large dc gain on the first stage. The first

stage is isolated from the load. So, it will not be affected by how low this value of R L is

and the second stage has to provide only a modest gain. So, when you have a resistive

load, this is really only the feasible alternative because if you try to use this it is possible.

But you will have to end up using such a large Gm that it will be very wasteful of power

ok. 

Now, what about stability with the Two stage opamp. I said that you have multiple poles

and zeros. So, you have to worry about stability.
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So, we have the transfer function of the opamp to be A naught which is the dc gain. I will

write it in this form 1 minus S by Z 1 ok. So, let me I do it like this so, that minus P 1 and

minus P 2 are positive numbers ok. Now, what about stability? Stability margins and so

on are determined by loop gain and the loop gain itself depends on the feedback loop that

you place the opamp in ok.

So, let us say I realize an amplifier of gain k ok. The loop gain of this let us say the

transfer function of the opamp itself is some A of S. A of S is Vo by Ve. The loop gain is

what I get by breaking the loop and going around it and seeing what comes back there.

So, that will be nothing but A of S divided by k ok. This we have seen earlier. So, this is

the loop gain. Now, so, the loop gain depends on the value of k which means that it

depends on the amplifier that we are trying to implement ok. 

Now, let us say we take the opamp and the gain of the opamp A of S of the opamp has

this magnitude ok. So, this is modulus A that is modulus V naught by Ve and it has a pole

at P 1 and it has a pole at P 2 and a 0 at Z 1 ok.

This is the gain or the transfer function of the opamp and what will be the loop gain

depending on the value of k this curve will be shifted down by 20 log k on the bode plot

ok. So, if k equals 1, this itself is the loop gain; if k equals 2, it will be like that and

similarly, if k equals 4, it will be like that and so on ok. So, this will be the magnitude of

L for k equals 2, the magnitude of L for k equals 4 and so on.



Also, if I plot the phase response; what happens? There is a 45 degree phase shift at the

first pole and then, the phase of is just minus 90. At the second pole there is another 45

degree shift and at the 0 there is another 45 degree shift because this is a top plane 0 ok.

So, we will not worry about the details of the phase right now, but what I at the point I

want to make is that we have seen that the stability margin depends on what happens at

the unity loop gain frequency ok. For the 3 cases I have considered k equals 1; k equals 2

and k equals 4. These are the unity loop gain frequencies and you can see that the phase

keeps going down monotonically for a function like this. So, we are interested in the

phase margin that is how far the phase lag is away from a minus 180 degrees phase lag

ok.

So, clearly it gets worse for lower values of k ok. This is the worst, it has the maximum

phase lag. This is better, it has less phase lag. This is even, it has the least phase lag ok.

So, we have the highest phase lag for k equals 1 ok.

Now, this is relevant because normally when you design an opamp without any further

information, you simply have to assume some value of k; obviously, the value of k that

you have to assume it is the worst case which is in this case 1 that is you assume that

whoever is going to use your opamp can use it with various values of k and you design it

for the worst case and the worst case happens to be 1. So, if k is 1 the loop gain is

nothing, but the opamps gain itself.

So, it is easy; anyway you can design the whole thing without worrying about which

feedback loop that is use evaluate the gain of the opamp and assume that that itself is the

loop gain and I just hit first stability ok. Now this is not a general procedure, when you

do know what value of k you have to design it for you design it for that particular value

ok; you do not design it for the worst case value. It is only when you do not know that

you design it for the worst case value, we will assume for the purpose of this lecture that

will design it for k equals 1. So, if we have k equals 1. 
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The loop gain equals the gain of the opamp or the unity loop gain frequency equals the

unity gain frequency of the opamp ok.

Now, let us again examine the function that we have the magnitude and phase A of S is a

naught times 1 minus S by that 1 plus S by minus P 1 plus S by minus P 2 ok. So, as I

plotted earlier, you start with A naught and then, you have a 20 dB per decade slope in

the magnitude plot. We have to make sure that these other poles appear beyond the unity

loop gain frequency ok.

This we have seen during our discussions of stability analysis and also these zeroes have

to appear, beyond the unity loop gain frequency ok. So, this is the condition that we must

satisfy and it should be beyond by a certain value and how do we determine that value?

For that we this is the magnitude of A, we plot the angle of A which is also the angle of

loop gain in this case. So, in our case we have a right half plane 0 ok.

Now, the right half plane 0 introduces phase lag ok; if you write the expression for the

phase of this angle of A of j omega will be minus tan inverse omega by Z 1 minus tan

inverse omega by P 1 minus tan inverse omega by minus P 2 ok. Here, P 1 and P 2 are

the poles which were negative number. So, this is how I have written it.



So, each of these contributes to phase lag and the total phase lag happens to be minus

270 degrees. Now, what is it that we want? At the unity loop gain frequency which for k

equals 1 is the unity gain frequency of the opamp itself.

We should make sure that this margin which is the margin between minus 180 degrees

and the actual phase at the unity loop gain frequency is sufficiently high, that is called

the Phase margin and again in absence of any specific information will assume that the

phase margin has to be lets  says 60 degrees or so ok. So, this  again is not a sacred

number you could have a phase margin anywhere from 30 degrees to 80 degrees or

whatever you want based on the context. But generally we assume that 60 degrees is a

good number and use that ok.
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Now, what does this mean? The total phase margin is the total phase lag which is minus

tan inverse omega by Z 1 minus tan inverse omega by P 1 minus tan inverse omega by

minus P 2 plus 180 degrees; it is the distance from 180 degrees.

So, first of all what omega are we talking about here? This is the omega u loop, unity

loop gain frequency. That is where the phase margin is measured and the unity loop gain

frequency is minus tan inverse Gm 1 by C and the 0 Z 1 is that Gm 2 by C ok. So, this is

the first term and it simply reduces to Gm 1 by Gm 2 ok.



The second one, this is the ratio of omega you loop divided by P 1 and the tan inverse of

that. Omega u loop is here and P 1 is there and they are very widely separated. What is

the factor of separation between these 2? It is very easy to see.

This is 20 dB per decade drop. So, this is nothing but the separation between these 2 is

the same as this number A naught ok. The ratio of these 2 numbers omega u o P a by P 1

is AA naught. This is something we know already omega u o P A can be approximately

calculated as A naught P 1, when the roll off is predominantly a first order ok.

Now, because of that this is tan inverse of a large number. So, this is simply minus 90

degrees that can also be seen from the plot the phase drops down to minus 90 and stays

that way for stays that way ok. This is the phase lag due to P 1. Now because P 1 is far

from omega o P A, it would have reached 90 degrees somewhere here and then it stays

on 90 degrees all the way there the contribution due to P 1 ok.

And finally, we have minus tan inverse omega u loop by P 2 this is something that has to

be calculated. I just leave it as it is omega u loop by P 2 plus 180 degrees and this is

nothing but 90 degrees minus tan inverse Gm 1 by Gm 2 minus tan inverse omega u loop

by P 2 ok.

Let me write it as minus the sum of these two. This is the phase lag due to the right half

plane 0; this is the phase lag due to the second pole ok. And we would like this to be let

us say 60 degrees. So, what does this mean? The sum of these two should be 30 degrees

and it is up to us to apportion the 30 degrees between these two, we can have a large

space like due to the 0 or the pole, but the sum of them has to be 30 degrees.

Now, if you make one of them very large, the other one has to be made very small and

that is usually very difficult and also you see that the phase lag due to the 0 depends only

on the ratio Gm 1 by Gm 2; clearly to make this small you have to make Gm 2 much

more than Gm 1 this is very clear right that guideline appears directly from this. Gm 2

has to be more than Gm 1 by a significant factor because if Gm 2 are equal to Gm 1, this

would be 45 degrees and there is no way to make this 30 degrees ok. In fact, we have to

keep this number well below 30 degrees right.

So, let us say for instance we will take Gm 2 equals 4 times Gm 1. Then, this particular

number will be tan inverse 1 by 4 which is approximately 14 degrees ok. So, this sounds



like a reasonable choice. Then, we have 14 degrees from this and again I have 16 degrees

from there; we will have 16 degrees for this one and we have to adjust the value of P 2.

So, that this number happens to be 16 degrees. This in essence is their design of the

opamp or this level ok; we have not yet gone to the transistor level. There is a reason we

discuss the opamp at the level of the control sources before going onto transistor level.

So, that these issues with transfer function and loop gain and so on come out very clearly

without being distracted by the transistor level details ok.

So, what do we do when we have to design a two stage opamp? We have to choose the

second stage trans conductance. So, Gm much more than the first stage Gm let us say we

make it  4 times again not a sacred number you could choose 3, you could choose 6

whatever is convenient. If we do choose 4, the 0 will give a 14 degree phase lag and you

will have 16 degree phase like left for the second pole and you can adjust the second

pole. So, that you get only 16 degrees phase like from that ok. 
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Now, what does this give you first of all omega u loop itself is Gm 1 by C and P 2 is Gm

2 C by C plus C 1 divided by CL plus C C 1 by C plus C 1 ok. And this is the ratio

omega u loop by P 2 and that is tan 16 degrees ok. I have here neglected the contribution

due to Go 2 because that is expected to be much smaller than the contribution due to Gm

2 right.



Now I will expand this out, I will get equals tan 16 degrees. Now, what comes out of this

is a quadratic equation in C ok. So, given CL and C 1 and the values of Gm 1 and Gm 2

you can solve for this ok.

So, let us try to put it in a more illuminating form.

(Refer Slide Time: 39:53).

We will have Gm 1 by Gm 2 times 1 or C square appears there and the 16 degrees can

because we chose G m 2 by Gm 1 of 4, otherwise we would get some other number ok.

Now, I will divide both sides by CL square; it makes sense to express everything as a

fraction of the load ok. So, here I will get C by CL and here I will get C 1 by CL and here

I get C by CL times C 1 by CL.

So, that is what this whole thing is. So, this is a quadratic equation in C by CL square and

it intuitively makes sense to normalize everything to CL because if you have a large CL;

then, that means, that the unity gain frequency of the second opamp that we used to make

the current controlled voltage source tends to be small and we already said that the unity

gain frequency of the overall opamp has to be smaller than that unity loop gain frequency

of the second loop; otherwise the second loop is not behaving like an ideal feedback

loop.

So, that means, that we will have to have a large C or a small omega u ok. So, if you

have a large load capacitance all the other capacitance also tends to be larger ok. 



So, you can calculate C by CL from this expression based on the ratio Gm 1 by Gm 2;

the phase margin that  we have I  will  put phi m prime because this  is  the phase lag

excluding the phase lag due to the 0 and it also depends on this ratio C 1 by CL ok. So,

the bottom line is it can be calculated based on these things and then, you can verify it

with simulation whether it is exactly right or not ok. So, let us go back here, we have the

expression for the poles and the 0.
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Now, in certain conditions the expression for this pole can be further simplified ok, this P

2. Now, what is the expression for P 2? It is minus Go 2 plus Gm 2 C by C plus C 1

divided by CL plus C C 1 by C plus C 1 ok.

Now, let us imagine a case where C is much more than C 1. Let us say the design values

turn out to be like that ok. So, what does it mean? I will approximate C plus C 1 by C

itself. So, P 2 becomes minus Go 2 plus Gm 2 divided by CL plus by CL sorry minus Go

2 plus Gm 2 divided by CL ok.

Now, does this make intuitive sense? Again, let us go back to the structure that we have

ok. Now, what we are assuming is that this C the capacity of C here is much more than

the capacitor C 1 over there ok.

So, what does it mean? Earlier, we assume that in this feedback, we had a division ratio

of C by C plus C 1. Now, if C is much more than C 1, there is no division at all. Any



voltage that appears here also appears there ok. So, C is approximately like a short circuit

right. In that case we will have this topology, when this is a short circuit I just shot this.

Now, if this Gm 2 is shorted on itself ok, the conductance is nothing but Gm 2 itself ok.

So, if we have Gm 2 like that it looks like a conductance whose value is Gm 2 or a

resistance of 1 over Gm 2.

So, the total conductance is Gm 2 plus Go 2 that is what we see here and there is a

mistake in the denominator here it should be CL plus C 1 ok. Clearly you see that if C is

very large, what happens is you will simply end up with C 1 here and we have these 2

capacitors C 1 and CL in parallel. So, we have Go 2 and Gm 2 in parallel with CL and C

1 and the second pole expression becomes C 1 simpler than before; it is simply Gm 2

plus Go 2 divided by C 1 plus CL ok. 

(Refer Slide Time: 47:00)

Now, this is true only when C is much more than C 1 which may or may not be true

always ok, but what you can do is use this expression for P 2 as a first cut approximation

ok.

Now, that is useful because we earlier said tan inverse omega you loop divided by P 2

should be 16 degrees or some particular value that we this to have ok. Now, omega you

loop is Gm 1 by C and P 2 is Gm 2 plus Go 2 divided by C 1 plus CL ok. So, now, you

see that we have linear equation in C it is much easier to solve.



So, what you can do is you can use this further approximation for the value of P 2 and

get a first cut value of C based on the linear equation solution which is very easy to

compute.  Sometimes  when  you are  calculating  things  in  your  head this  may  be  the

method to follow and finally, you can see really whether C is much more than C 1 or not.

Now, if C terms out to be much more than C 1, you do not have to do anything further. If

C is not much more than C 1, what you will have to do is to go back and recalculate

based on the quadratic equation ok.
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Thank you; I will see you in the next class.


