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Hello and welcome back this is lecture 13 of Analog Integrated Circuit Design. In the

previous class, we looked at simple realization of an opamp at the level of the control

sources. We realized reducing voltage control current source loaded by a capacitor. We

also saw that the output resistance of the voltage controlled current source limits the dc

gain and this consequently results in steady state error. So, even after a long time the

output does not reach exactly the desired value, but will be a little bit away depending on

the amount of dc loop gain ok.

So, the dc loop gain has to be higher than a certain value and this requires us to have

different opamp topologies which can possibly realize higher and higher dc gains. In this

lecture we will look at one such opamp which will perform better than the one that we

saw in the previous class. 
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The opamp that we had was a voltage controlled current source or a trans conductor,

loaded by a capacitor and to isolate the external load, we can use a buffer, But, it turns

out that Buffers are not very easy to implement in CMOS technology. So, they can be



implemented,  but they bring with them their own limitations, we would like to avoid

them.

So, most of the time; opamps are used without explicit buffers in CMOS processes. This

is the input voltage and a current GmVe is pushed out of it. So, the voltage here will be

Gm by SC times Ve; where, this is the capacitor C. So, the unity gain frequency of this

opamp omega u equals Gm by C ok. 

Now, even  if  the  buffer  isolates  the  external  load,  the  trans  conductor  as  an  output

resistance R aught or an output conductance G naught which are reciprocals of each

other. Now this is an inherent property of a voltage controlled current source. Just like a

current source has an output resistance which is not infinite; a voltage controlled current

source also has an output resistance which is not in finite.

So, because of this, the transfer function that we will get will be the output by input of

the opamp should have been Gm by SC, but this is not what we will get we will get Gm

by SC plus the output conductance.

This can be written in various forms; we can write it as Gm R naught divided by SC R

naught plus 1 which makes the dc gain explicit at dc or low frequencies, we have again

equal to Gm R naught and the pole which was at the origin, in this transfer function has

moved to a frequency minus 1 over C R naught ok. It can also be written in alternative

form as 1 by SC by Gm plus 1 by Gm R naught. Let me write it on the side. 

Now, in this case, this is the ideal part that we would like to implement. Additionally, we

have a small non ideal number here, 1 over Gm R naught. So, the higher the value of R

naught, the higher the dc gain Gm R naught and the smaller will be this non ideality ok.

But in general you will never be able to make this infinite. So, we will have to live with

some finite value of Gm R naught.

And in fact, depending on the topology that we choose, the value of Gm R naught may

be limited to some modest value like 50 or 100 or so ok; whereas, sometimes we would

like  to  have  opamps  with  the  gains  of  for  10000  or  even  a  million.  So,  there  are

limitations on how high Gm R naught can be ok.



Now, this depends on the topology. So, depending on the topology we could have either

25 or 250, but there will always be some limitation.
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Additionally, what happens is that sometimes, let us imagine a case, where the opamp is

used without a buffer and let us also assume that there is a resistive load R L. Now, in

this case the dc gain of this opamp will be Gm R naught parallel RL and regardless of

how high you make R naught you will always have R L. So, the dc gain will be limited

to Gm times RL ok. So, this is another problem that sometimes when you have resistive

loads the dc gain will be limited by that and we have to find ways of obtaining higher dc

gains even with external loads ok.

So, basically there are 2 possibly, there are different possibilities of trying to increase dc

gain. First is increase R naught that is we do something to the transconductor. So, that it

is  internal  resistance is  increased.  Now, this  clearly  does not  help when we have an

external resistive load RL and we may have to use alternative topologies ok. So, during

the initial analysis we will still assume that there is no external load we will derive the

topology and then, show that even with external resistive load these things can work well

ok.

Now, to  investigate  alternative  topologies  first  we need to  find out exactly  why this

topology results in limited dc gain. It is quite simple. Ideally we would have wanted all

the  current  from this  trans  conductor  Gm to  flow into  the  capacitor  C.  Now, what



happens is when you have are not a part of it flows into it. So, that is why we get a finite

dc gain, as supposed to when we had only a capacitor we would have infinite dc gain and

we had an ideal integrator ok.

Now, essentially what we are doing here is converting the output current Gm Ve of the

transconductor into a voltage by passing it  through a capacitor ok. Now if we find a

different way of converting this current to a voltage Gm by SC without having some of

the current going to some other component, we will make a better integrator ok. So, that

is the problem.

Now, that is a well-known problem which also has a well-known solution. The problem

basically is that let us say you had a current I naught going into an impedance Z and the

current source has some eternal output resistance R naught, what happens is a part of this

current will go into that ok.

So, the output voltage instead of being I naught times the impedance Z will be I know

times Z parallel R naught and the way to get around it is not to simply try and pass the

current through a load resistance by applying the load across the current source, but to

make what is known as a current controlled voltage source and we have already seen the

topology of a current controlled voltage source using an opamp.

And for now let us assume that the opamp itself is ideal I naught and I connect the same

impedance Z in feedback ok. And initially let me assume that the opamp is ideal. What

does it mean? This voltage is 0 and the output voltage will be exactly equal to I naught

times Z assuming that opamp is operating in negative feedback. 

Now, what happens if the current source is non-ideal and we have a resistance R naught?

Because this voltage is 0, no current flows through the resistance and all of the current I

naught still flows through this impedance Z ok. So, even in presence of are not the output

voltage will be I naught times Z.

So, that is why when you want to convert a current to a voltage; it is better not to simply

apply the impedance across the current source although that is possible. It is better to use

a current controlled voltage source of the appropriate trance impedance value ok. You

can clearly see that the problem at hand for us is also the same we have a current Gm Ve

which has to pass through a capacitive impedance.



Now, we were simply applied the capacitance to the output of the transconductor that is

not what we should do we should try to make a current controlled voltage source whose

input is the output current of the transconductor and whose output voltage will be the

output of the opamp ok. We will see how to do that. Now, before we go there one more

thing to keep in mind is that of course, we will not have an ideal opamp we will have a

real opamp with some unity gain frequency omega u ok.

Now, what is the range of frequencies over which this behaves like a current controlled

voltage  source;  behaves  like  a  current  controlled  voltage  source  over  a  range  of

frequencies where the loop gain magnitude is much more than 1. This we have seen

earlier rather basically it is a range of frequencies within the unity loop gain frequency of

this particular feedback loop ok. This is a very important point this opamp will be a real

opamp and it has to be such that it is unity gain frequency is higher than the frequency of

interest.

Now, what is the frequency of interest for us? We would like this our opamp to behave

like an integrated over a certain range of frequencies and the unity gain frequency with

the opamp which is used to make the current controlled voltage source has to be much

higher than the unity gain frequency of the opamp we are trying to realize that is Gm by

C ok; we will see all of these things in more rigorous analysis later. But it is a good idea

to get an intuitive feel for how things should be when we design them. So, how do I

make my opamp? 
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Simply loading the transconductor with a capacitor C; I will not do this, I will pass it

through  a  Current  Control  Voltage  Source  whose  transimpedance  is  C  with  the

transimpedance of 1 by SC. 

Now, with an ideal opamp, the voltage here will be 0 and the output voltage will be I

have a current Gm V here. So, the output voltage here will be minus Gm by SC times V

ok.  The  sine  inversion  comes  because  simply  because  of  the  inversion  through  the

second stage. So, to get rid of the inversion what I will do is I will invert the signs of the

transconductor I will have minus plus.

So,  that  I  have  Gm V flowing that  way;  it  will  flow in  the  same way through the

capacitor and the output voltage will be plus Gm by SC times ok. Obviously, this opamp

will not be ideal because if we had an ideal opamp, we would try to just use it and not

make another opamp with it ok. So, this will be some real opamp and we have to make

sure that even with the real opamp all our assumptions hold ok. 

Now, what is the opamp that we know? There is only 1 opamp that we know so far. And

that  is  this  particular  opamp ok. So, this  is  the opamp that  we used in  the previous

lecture, discussed in the previous lecture and this is the only opamp that we know. So, we

will just use it in which place ok. So, please understand what is going on here. So, we

want to make an opamp.



So, we will instead of loading the transconductor with a capacitor we will follow the

transconductor  using  a  current  controlled  voltage  source.  But  to  make  the  current

controlled voltage source, we need some opamp. So, we will use the simplest opamp that

we know which is; basically a transconductor which is loaded by a capacitor ok. So, if

we do that what do we get? 
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This is the opamp used to make the current controlled voltage source and I will call the

CL. CL will be any capacitance that is loading the transconductor plus any external load

that may be applied to the opamp ok. So, that will always be present. So, all of that is

clubbed into a single capacitor CL. 

Now, I have Ve here; I will call this Gm 1 and I will call this Gm 2 just to distinguish

between them and also invariably between any node and ground there will be parasitic

capacitance between the output of the first trans conductor and ground there will be some

capacitance which I will call C 1 in analysis we need to include the effects of all of these

things and finally, figure out what exactly happens. So, the reasoning so far has said that

this opamp will be better than using just that one, that is Gm 1 loaded by a capacitor C

ok.

So, that is the reasoning by which we derived all this and also let us put the limitations in

place. These transconductance will have some output resistance like I said earlier; you

cannot make a current source with an infinite output resistance. It can also not make a



transconductor or a voltage controlled current source with an infinite output resistance

ok. So, this is the topology that we have to analyze and see if it is really better than what

we started off with which is that one ok. 
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 I will redraw my opamp here ok. We need to do analysis of this and find out the ratio of

output voltage to the input to the opamp Ve and that will be the transfer function of the

opamp.

Now, before we go and do the full-fledged analysis, it is a good idea to look at the circuit

and see what the transfer function might come out like ok. This will serve later as a

sanity check for us. Now, what will be the order of this transfer function? How many

poles  will  it  have?  The number  of  poles  or  the  order  is  nothing but  the  number  of

independent state variables in the circuit and state variables are nothing but capacitor

voltages and inductor currents.

Here of course, we do not have inductors. So, it is only capacitor voltages and we have 3

capacitors connected like this. So, there can be at most 3 state variables, but we also see

that  the voltage on C 1 plus the  voltage on C equals  the voltage  on C l  ok.  The 3

capacitors are connected in a loop which means that only 2 of them can be independently

set. So, there are really only 2 independent variables. So that means, that this will be a

second order transfer function; that means, there will be 2 poles. 



Now, there can also be any number of zeros; that is a little harder to figure out we will

see later how to look at the circuit and try to figure out the frequency of the zeros. But 1

guideline is that whenever you have 2 parallel paths from let say the output of the first

stage to the final output, there is a path through Gm 2; there is also a path through the

capacitor in general you can expect zeros in such a case and so, we will also expect that

there will be a 0 here.

But this is a little more vague and it is also possible that you do not have a 0 or there may

be zeros even without 2 parallel paths and so on. But that is some expectation that we

have ok. And finally, what would be the dc gain of this? Again, when we find out the

transfer function and set the value of S to 0 we should get the dc gain ok.

Now, we can also find the dc gain independently without doing the full blown analysis

with Laplace transforms; if we do that then we can, after we do the analysis we can

compare it  to this  value and see if  it  satisfies sanity check or not.  And that  is  again

extremely simple for dc all that happens is that all these capacitors are open circuited C 1

C 2 and CL. We have a current Gm 1 times Ve going into R o 1.

So, the voltage here will be Gm 1 R o 1 Ve negative of that and that is applied to the

second transconductor which provides a current Gm 2 times that voltage which flows

into the output resistance R o 2. So, the output voltage will be plus Gm 1 R o 1 Gm 2 R o

2 times Ve. It is basically a product of the dc gain of the first stage and dc gain of the

second stage. This is something that you would easily expect when you have a cascade of

stages, you will have the product of dc gains to be the total dc gain and that is Gm 1 R o

1 Gm 2 R o 2 in this case ok. 

So, now let us do the analysis.
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This circuit has 2 nodes and by writing k c l equations at these 2 nodes. They can find out

where all the voltages and currents in the circuit first of all k c l at this node let me assign

this node voltage to be some V 1 and this is of course, V naught and I will write it in a

matrix form; some admittance matrix times the vector of voltages V 1 V naught equals

the vector of source currents that is currents flowing into these nodes. First of all the

current flowing into this node containing V 1 is minus Gm 1 times V ok.

This is provided by the first transconductor and the matrix entries can be filled up. This

entry here is the total admittance which is SC 1 plus C plus G o 1; G o 1 is the reciprocal

of R o 1. It is convenient to use the conductances directly instead of writing it as 1 over

R o 1 everywhere ok.  And this  term is  minus SC; basically  the current through this

capacitor is SC times V 1 minus V o that is why we get plus SC here and minus SC ok.

They should be familiar to you from basic circuit analysis.

Now, similarly the entry here is the total conductance at the node containing V o. So, that

is SC l plus C plus G o 2 and the entry here is the current being drawn from this node due

to the voltage on that node and that happens due to 2 components 1 is C and the other 1

is Gm 2 ok. It turns out that we will get Gm 2 minus SC here ok.

So, this is a system with 2 nodes and there are 2 equations and by solving for this we can

find out the value of V naught in terms of V ok. And any number of ways to solve this

you can invert  the matrix  and so on.  But  since we are only interested  in  the output



variable we will use crammers rule which says that the output voltage V naught will be

equal to the determinant of this matrix. And the second column is replaced by the source

vector divided by the dependent the determinant of the admittance matrix ok. 

So, let me copy this over. So, as I said I need to copy this over again. 
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So, as I said we notice nothing but the determinant with the second column replaced by

the source current vector that is the determinant of that divided by the determinant of the

admittance matrix ok. And this gives you, it is the determinant of what is on top on the

numerator and the determinant of the denominator is nothing but will have a number of

terms containing S square due to the product of this and that and also due to product of

this sign not ok.

This much is due to the product of this one and that one minus I will have S square times

C square ok. And in fact, this cancels with that one and will have a number of terms

containing S that is due to product of this with this, product of this with that, the product

of this with that one and the terms turn out to be ok. In addition to these there will be a

constant and that is only due to this one and that one there. So, that will come out to be G

1, G 2 ok.

So, let me just rewrite it.
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And also I will take Ve to the left hand side. So, that I get the transfer function V naught

by Ve. This will be equal to Gm 1 Gm 2 minus SC divided by the second order term first

C1 C C CL plus CL C1 plus the first order term which has plus the constant term. So,

this is the transfer function of the opamp looks comes somewhat complicated, but it turns

out that we can make intuitive sense of this transfer function as well.

But first of all though sanity checks, what did we say? The dc gain. What is the dc gain

here? If I substitute S to be 0, this goes away and all these things go away. So, ok so, that

is one thing and this is exactly the value that we got we said the dc gain was Gm 1 R o 1

times Gm 2 R o 2 and that is exactly what we have here except that it is written in terms

of conductances that is all.

And also we said that it  is a second order transfer function because there are only 2

independent state variables and that is the case also there are 2 poles and there is one 0

ok; we can see that in the numerator there is one 0 and this also we guessed because

there were 2 different paths to the output; from the output of the first stage the output the

second stage. There were 2 parts; one through the trans conductor Gm 2, one through the

capacitor C and generally when you have 2 parallel paths to the output with different

phase shifts, different frequency dependences you will end up getting a 0 ok. 

So, the next thing is to figure out where the poles and zeros are and then try to make

sense out of them. So, first of all the 0 frequency is very easy. Where is the 0 here? It is



when the value of S for which this term becomes 0 and 0, I will denote it by Z 1 equals

plus Gm 2 by C ok. I explicitly write the plus because zeros can be in the right half for

left half plane and this happens to be in the right half plane ok. Now, the poles of course,

can be obtained by solving this quadratic equation.

But the conventional solution to the quadratic equation the familiar one minus b by 2

plus minus square root of b squared minus four (Refer Time: 30:00) by 2 a that simply

will  not  be  able  to  do  here  because  each  of  the  coefficients  a  b  and  c  are  quite

complicated.  And if I even manage to write down that expression will not be able to

make any meaning out of that ok. So, what we will do is we will find some approximate

ways of solving the quadratic equation. It turns out that there is an easy approximation

which also in this particular case yields intuitive results ok. 
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So, it turns out that the quadratic equation of course, has 2 roots, but when the 2 roots are

very far from each other that is when the magnitude of one of the roots is very small

compare to the magnitude of the other root, the following approximation can be used ok. 

Let us say we have a square plus bs plus c equals 0 and there are 2 roots s 1 and s 2 ok.

So, this clearly means as 1 square plus bs 1 plus c is 0 and also a s 2 square plus bs 2 plus

c  equals  0  and  let  us  assume  that  the  magnitude  of  s  1  is  much  smaller  than  the

magnitude of s 2; you can verify this for yourself. You can write down the expression for



the solution of the quadratic equation and see that this is indeed the case and in this case

it turns out that first of all for s 1, this term will be negligible compared to be s 1 and c.

So, this is approximately equal to 0 and we can easily determine s 1 to be approximately

minus c by b ok. What we have done is to reduce the quadratic equation to a first order or

a linear equation. Similarly for s 2, it turns out that this is much smaller than other 2 and

s 2 can be approximated by minus b by a ok.  Again,  we had to solve only a linear

equation.

Now, you  have  to  keep  in  mind  of  course,  that  this  is  true  only  when  one  of  the

magnitudes  is  much smaller  than  the  other. Now, in  fact,  you can  try  solving  every

quadratic equation that you see approximately like this and see if it is indeed true that

one of the roots has a much smaller magnitude than the other. If it is then, it is consistent

otherwise it is not ok.

Once you follow this procedure and find the roots s 1 must come out to be much smaller

of magnitude than s 2. Now, clearly this will not hold when the quadratic equation has

complex conjugate roots because when you have 2 roots which are complex conjugates

of each other. The magnitudes of the 2 roots; is exactly the same. So, this will hold only

for real roots which are very far from each other ok. So, this at least looks manageable

given the complexity of the coefficient a b and c ok.

So, now let us find out the values of these.
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I will call this Pole P 1 to be the smaller one and that is nothing, but minus c by b and

this if I substitute the coefficients from a quadratic equation what do I get? So, this is the

expression, we have this is still somewhat complicated. But as you will soon see you can

make intuitive sense out of this one, I will just divide both numerator and denominator

by G o 2 to put it in a more meaningful form.

The reason I did this is to get the answer in the form of some conductance divided by

some capacitance as you can see the numerator has some conductance G o 1 and the

denominator has terms which represent capacitances well later make sense of what these

capacitances are ok.

Similarly, the higher of the 2 routes; the higher frequency route p 2 will be minus b by a

which is minus and here, we will have and in this particular case I will divide both the

numerator and denominator by C plus C 1 ok.

Again, you will later see why this makes sense. So, first of all I will have C by C plus C

1 times Gm 2 in the numerator you see that G o 2 is multiplying both C and C 1. So, we

will have plus G o 2 and plus we will also have G o 1 C plus C l by C plus C 1 and in the

denominator I will have C L plus C 1 C divided by C plus C 1 ok.

So, again I have made some manipulation of the expression. So, that in the numerator I

have a; conductance and in the denominator we have a capacitance ok. So, that makes it



easier to make sense out of the poles. Now before we try to do that let us first quickly

review how one might  be able  to  tell  the values  of  the  poles  in  a circuit  intuitively

without doing circuit analysis ok.
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So, let us take the simple opamp we had earlier. Let me just call the capacitance C 1 and

this conductance G o 1 that is simply the output resistance of this conductance Gm 1 ok.

Now you can work this out and see right and you will find that the pole is at minus 0 1

by C 1. I will not do the analysis here and similarly. You can let us say add another stage

here; let us say this is a trans conductance Gm 2 and this is a conductance G o 2 with a

capacitance CL ok.

Now, you can work this out it turns out that you will have some transfer function from

here to there and another one from here to there and the 2 are independent that is the first

1 has a transfer function Gm 1 by G o 1 plus SC 1 the second 1 has a transfer function

Gm 2 by G o 2 plus SC L and the final transfer function is the product of the 2 and there

will  be  2  poles  ok.  And  the  second  pole  is  due  to  the  second  stage  due  to  this

combination the first pole is due to that 1 G o 1 by C 1 and there will be another pole at

minus G o 2 by CL ok.

So, in circuits we are you have these R C parallel combinations which are isolated from

each other you can identify the poles to be simply minus the conductance divided by the

capacitance  across  it  ok.  So,  you  identify  capacitance,  you  find  what  conductance



appears across them and the ratio of conductance to capacitance gives you the poles and

you must  have done this  in  basic  circuit  analysis  also with simple R C circuits  and

exactly the same thing holds in this case ok.

Now, when you have capacitance and resistance connected in arbitrary fashion; this is

not easy to do or maybe even impossible to do, but when you have isolated pieces of our

senses you can do this ok. Now you also notice that the example circuit I took is exactly

the same as this opamp except that I did not have this C ok. In my refined opamp, what I

think is the refined opamp I also have this capacitor C ok. Now without that C, we can

identify the poles very easily.

Now with C, we have identified the poles to be this one and that one ok. Now we will try

to relate the case without C and with C and see how it makes sense. So, also notice that

this pole has a conductance G o 1 and some capacitance and here, it has a conductance G

o 1  and  a  capacitance  C 1  which  is  across  it.  Similarly, this  has  G o  2  plus  some

conductance divided by some capacitance; whereas, here we have G o 2 divided by CL

ok. 
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So, without C, I have minus G o 1 by C 1. And with C, I have minus G o 1 by C Gm 2 by

G o 2 plus 1 plus G 1 by G o 2 plus C 1 plus CL times G o 1 by G o 2.



Now, we can already see some relationship between the two, we have G o 1 by C1 plus

some capacitance and what is that capacitance? That is C times Gm 2 by 0 2 plus 1 ok.

Now why do I get a term like this; if you observe the second stage looks like this one; it

also has this capacitor C1. For the moment, let us ignore this capacitor. So, basically

from here to here from here to the output there is a gain of minus Gm 2 by G o 2 and this

capacitor C is connected across an amplifier whose gain is minus Gm 2 by G o 2 ok. 

So, let us say I have an amplifier of a negative gain minus A and I connect a capacitor

across it; what happens? And let us say I apply some test voltage to the input. The output

will be minus A times we test and the voltage across the capacitor in this polarity will be

A plus 1 times sorry, in this polarity will be A plus 1 times V test.

So that means, that from this source V test it will draw a current which is equal to a plus

1 times V test times SC ok. So, simply looking into this block, it appears like I have a

capacitance of A plus 1 times C because if I apply V test to this, the current flowing here

would be exactly same as that one ok.

This phenomenon is known as Miller Effect. If you connect a capacitor from the input to

output of a negative gain amplifier, from the input it looks like a much larger capacitor

and how much is  it?  It  is  equal  to  1 plus  gain times the capacitance  value and this

capacitor is also sometimes called the Miller Multiplied Capacitor ok.

Now, the second stage over opamp, I has a negative dc gain of c m 2 by G o 2; we have a

capacitor  C  connected  across  it.  So,  looking  in  here  it  approximately  looks  like  a

capacitance. So, Gm 2 by G o 2 plus 1 times C ok. It is only approximately. So, because

the amplifier we have here is not an ideal ok; it is not an ideal voltage controlled voltage

source of this game unlike this one.

This is a ideal voltage controlled voltage source of gain minus A; whereas, here it is a

trans conductor loaded by a resistor there is also a capacitor here and so on. So, only

approximately it looks like a capacitor. So, you do see that in addition to C 1 which

appeared across G o 1 you also have this particular term ok. 



(Refer Slide Time: 44:48)

So, in other words, if I redraw the complete opamp this is the first stage C 1 ampere will

directly across G o 1 and we have this capacitor across an amplifier whose dc gain is Gm

2 divided by G o 2. And there is also some capacitance CL here.

So, approximately looking into this, we see a miller multiplied capacitance C times Gm 2

by G o 2 plus 1 ok. So, what do we have? We have a conductance G o 1 that is there we

have a capacitance C 1 that is there and we have a miller multiplied capacitance which is

there.

Now, there are also these other terms this one and that one; they appear because first of

all this pole itself was obtained approximately and secondly, that is as an approximate

route to the quadratic equation and secondly, this amplifier is not ideal ok. It is it has a

finite output resistance; I mean non zero output resistance and so on.

So, you also have these extra terms, but it turns out that the significant terms are what is

highlighted here C 1 and the miller multiplied C ok. So, although the expression was

complicated we were able to make intuitive sense out of it which is good.

So, what happens is that we will have across the conductance output conductance of the

first  stage,  we  effectively  have  these  2  capacitors  capacitance  C  1  and  the  miller

multiplied capacitance C because C is connected across the input to say is connected

from the input to output of the second stage ok. 



Now, it is also of interest to see what has happened to this pole frequency. As it increased

or decreased, what do you think? So, you can see that first of all it is obviously, reduced

in frequency because the numerator is the same the denominator C 1 remains as it is.

(Refer Slide Time: 47:12)

And we also have this and if C is comparable to c 1 Gm 2 by G o 2 is a number mod that

is much more than one. So, the denominator has increased a lot. So, when you have no

capacitor and when you have a capacitor, it moves to low frequency ok.

Similarly, P 2 which was minus G o 2 by C L became minus G o 2 plus there are other

terms like Gm 2 C by C plus C 1 plus G o 1 C plus C by C plus C 1 and divided by CL

plus C times CC by C plus sorry C times C 1 by C plus C 1 and the next lecture, we will

go and see interpret this and then make sure that it makes intuitive sense as well ok.

In the next lecture, what we will do is we will make sense out of this expression as well

and see how it makes intuitive sense. 

Thank you and see you again.


