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In this lecture, we are going to study a specific property of the opamp called slew rate.

Before we study that we actually need to understand a particular characteristic of the

opamp namely what are called the large signal transfer characteristics. So, what I am

interested in is calculating I D 1 minus I D 2. So, in other words, this is the differential

current flowing through M 1 and M 2. I want to find this as a function of the differential

input voltage which is applied and I am so which is V in 1 minus V in 2 that is delta V in.

So, in other words, I want to plot I D 1 minus I D 2 as a function of V in 1 minus V in 2.

Now to do that I need to first calculate analytically I D 1 and I D 2 or the difference as a

function of the input voltages. So, to do that, I need to write down the correct equations

of the opamp of the transistors. So, first of all, let us assume that the total current through

the opamp is 2 I naught, so that each of M 1 and M 2 has a current I naught. So, before

we write it in this manner. So, we can write the voltage at node x y as V in 1 minus V GS

1 or V in 2 minus V GS 2. So, clearly these two quantities have to be equal. This means

that V in 1 minus V in 2 has to be equal to V GS 1 minus V GS 2.



Now, what do we know about V GS 1, V GS 1 is nothing but V T of the transistor plus

root of 2 I D 1 over mu n c ox W over L. And similarly, V GS 2 is V T plus root of two I

D 2 over mu n C ox W over L. So, therefore, V in 1 minus V in 2 is equal to root of 2 I D

1 over mu n C ox W over L minus root of 2 I D 2 over mu n C ox W over L. This is the

first relation I will denote this as equation one, this is the first relation between I D 1, I D

2 and V in 1 V in 2. Remember that V in 1 and V in 2 are the known variables, and I D 1

and I D 2 are the unknown variables for this particular calculation.
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The second relationship is simply KCL at node x y which tells us that I D 1 plus I D 2

always has to be equal to 2 I naught. So, I will denote this by equation 2. Clearly, I have

two equations and two unknowns, so I should be able to solve for I D 1 and I D 2, but

more specifically I am interested in solving for I D 1 minus I. It turns out that if you

solve these equations for I D 1 minus I D 2 you will get the following relationship. So,

you can of course, do some arithmetic manipulation. So, it turns out that I D 1 minus I D

2 depends on V in 1 minus V in 2 in the following manner. So, I D 1 minus I D 2 is half

mu n C ox W over L into V in 1 minus V in 2 times square root of 8 I naught over mu n

C ox W over L minus V in 1 minus V in 2 the whole square. So, clearly I D 1 minus I D

2 is an odd function of V in 1 minus V in 2. Now, what happens when V in 1 minus V in

2 is 0, if that happens clearly I D 1 should be equal to I D 2 which means they are both

equal to I naught. So, this equation is clear on that.



Now, if V in 1 minus V in 2 becomes large enough it turns out that this equation is no

longer valid because we have assumed in calculate writing down this equations, we have

assumed that both transistors are in saturation. If V in 1 minus V in 2 is large, one of the

current starts decreasing, the other current starts increasing because clearly I D 1 minus I

D 2 is finite. So, one goes out of saturation. So, this is something to keep in mind. So, if

you were to plot I D 1 minus I D 2 as a function of V in 1 minus V in 2, it turns out that

for very small V in 1 minus V in 2 this particular relationship is linear, because you can

assume that you can linearize this particular expression to get a linear dependence. If V

in 1 minus V in 2 becomes large, it turns out that this particular relationship becomes

non-linear in some manner that you can determine by plotting this curve.

Now, what we are interested in are a couple of points on this curve. So, first of all, we are

interested in finding out what value these two points are. So, clearly when this happens

you can see that I D 1 minus I D 2 becomes a fixed value, and that happens when one of

the transistor goes out of saturation into cut off. When that happens let us say M 2 turns

off then all of the current flows through M 1; in other words this total current has to be

equal to 2 I naught. On the other side, if V in 1 minus V in 2 becomes very goes negative

and large the all that the current flows through M 2, and therefore, I D 1 minus I D 2 is

minus 2 I naught because I D 1 becomes 0, and I D 2 becomes minus 2 I naught.

Now, another property of this is that the slope around the origin has to be equal to the

derivative of I D 1 minus I D 2 over dope V in 1 minus V in 2. And from small signal

analysis, we know that this is equal to g m of the differential  pair and that is why it

happens to be linear around the origin. Now, of course, once it reaches this point, the

transistor no longer has any transconductance.
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For  example,  if  you  were  to  plot  the  transconductance  of  the  device,  the

transconductance  of  the  differential  pair  as  a  function  of  delta  V in,  it  would  look

something like this; it would go to zero at some point. Our job is to find out at what point

this full switching happens. In other words, I am trying to find out at what voltage the

current fully switches from one side to the or fully switch to one side. It turns out that

happens when the gate source voltage of one transistor falls just exactly to its threshold

voltage; and that can easily be calculated now as delta V in, I will call that delta V in 1.

This delta V in 1 happens to be equal to root of 4 I naught over mu n C ox W over L.

Now, I am going to rewrite this in a specific manner, I am going to rewrite this as root of

root 2 into root of 2 I naught over mu n C ox W over L. And you can clearly see that this

is nothing but root 2 times V GS 1 minus V T at the quiescent point. So, if you were to

take the quiescent point of the differential path, and calculate the V GS 1 minus V T

which is the overdrive voltage or the V D sat of the device. And if you were to apply root

two times that voltage at the input of the differential path all of the current would switch

to one side and that is this point delta V in 1.

Now, we are interested in this for a very specific reason, we are now going to study what

will happen if you start applying incremental steps to the input of the opamp. So, I am

going to take the opamp, and I am going to start applying incremental voltage steps, so

delta  V d  by  2  and  minus  delta  V d  by  2.  So,  in  other  words,  I  am  applying  an



incremental voltage differential voltage of delta V d at its input. And let us say that the

opamp is driving some load capacitance C L as we have seen before the opamp or a

normally drives a capacitive load because transistors present a capacitive load when seen

from the gate. Let us say this output voltage is V naught.

Now, if I were to apply a differential voltage delta V d, let us first start by assuming delta

V d is small. If delta V d were small, I can calculate what i o is. I am now going to write

down the total currents through the transistor this current is I naught plus some sorry I

naught plus some delta i 1 this current is I naught minus delta i 1 where delta i 1 is equal

to g m 1 times delta V d by 2. Of course, what is going to happen is that this current is

going to flow through M 3 and get mirrored down to M 4. So, current through M 4 is I

naught plus delta i 1 and so the incremental current total incremental current of 2 delta i

1 flows through the capacitance C L. So, I naught is 2 delta i 1 which is clearly g m 1

times delta V d.

So, clearly the one-stage opamp acts like a transconductance of value g m. If I were to

replace  it  with  a  block  diagram,  it  would  look  like  this;  it  would  look  like  a

transconductor whose value is small g m 1. So, this is delta V d by 2 minus delta V d by

2, this is what the model of the opamp would look like.
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So, if I were to plot the input and output voltages. So, let me first plot the input voltage. I

am giving a small step voltage in the input. The output voltage now, remember the x-axis



is time; and here this is delta V d, and this is V o. So, for this particular delta v d let me

call that delta V d 1. So, i o is equal to g m times delta V d 1. So, this i o 1 and for the

capacitance I can say C L d V o by dt is equal to i o 1 because all of this current flows

through the capacitor and therefore, d V o by dt is i o 1 by C L which is g m delta V d 1

by C L. Clearly, the d V o by dt is a constant because delta V d 1 is constant C L is

constant and g m is constant, therefore, the output rises as a ramp because the output

current is constant.

Now, let us say I increase the value of delta V d 1 to delta V d 2, I apply a larger step at

the input. In that case, d V o by dt is equal to g m delta V d 2 by C L and so on. So, it

would rise with a as a faster ramp. Now, if I were to apply a large enough step if I were

to apply large and a larger step. Let us assume I apply a very large step delta V d 3, what

would happen is that the largest current that can flow out of the device is clearly limited

because at  that point what would happen is all of the current 2 I naught would flow

through M 1. So, this current is 2 I naught, this current is 0; and this 2 I naught current

flows through M 3 and flows out of M 4 into the output.

Now, please note in this case d V naught by dt no longer depends on delta V d, it is

simply 2 I naught over C L. So, this ramp would rise at the rate of 2 I naught over C L.

Now, the important thing to note is that the important thing to note is that if you were to

increase the slope any, if you at increase delta v d any further you would not get any

further increase in the slope of the output voltage that is important to remember. So, I

will just write down the slope numbers here, this slope is g m delta V d 1 by C L and this

is g m delta V d 2 by C L. So, it is important to remember if delta V d is larger than delta

V d 3 slope V o slope remains as 2 I naught over C L, you cannot charge the capacitance

any faster. In such a case, so the opamp is said to slew and the maximum rate at which

the opamp can charge or discharge a load capacitance is called as slew rate. So, the slew

rate is the maximum rate of charging charge or discharge of the load capacitance.
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So, let us now find out what the slew rate of the opamp is. So, let us take this opamp and

let us apply a positive step. And let us assume that the opamp is charging some load

capacitance C L. As we have seen in this particular condition, the M 1 assuming that this

is a positive step M 1 carries all of the two current 2 I naught M 2 has 0 current, this

current is 2 I naught, M 4 carries 2 I naught and that is the rate at which the capacitance

is charged. So, the positive slew rate is said to be 2 I naught over C L.

Now, what happens if a negative step is applied, let us say you were to apply minus delta

V d by 2 to M 1 and plus delta V d by 2 to M 2. If that were the case, M 2 would have a

current 2 I naught, and M 1 would have 0 current, M 3 would have 0 current, M 4 would

have zero current. So, M 1, M 3 and M 4 would be cut off and all of this current all of

this current would be pulled out of the capacitor C L, so that C L would discharge at a

maximum rate of 2 I naught over C L. And this also happens to be the negative slew rate.


