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Lecture - 10
Stability of Negative Feedback Systems

In this lecture, we will start by looking at the Stability of Negative Feedback Systems as

a function of frequency. 
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So as we saw previously, we are going to compare the loop gain in the Laplace domain

with minus 1 and as  we said this  can be split  into two sets  of conditions.  The first

condition is that the magnitude of the loop gain be greater than or equal to 1 and the

second condition is that the angle of the loop gain be minus 180 degrees.

Now, these are called the Barkhausen criteria, but more importantly for us what this tells

us; this gives is a bound on the stability of feedback systems on the; actually the sets the

condition on the loop gain of the system. So, what we will do? We will start looking at

some simple systems 1 pole, 2 pole, 3 pole systems and see what implication there is for

stability. So, just a reminder that the loop gain is the feedback factor f times A of s.

So, we will take some sample systems, so let us start off with a 1 pole system. So, in

other words A of s is; A naught by 1 plus S by omega p; this is a frequency response of a



1 pole amplifier. And of course now we need to look at f times A of s, so what we can say

about this system is that of course, the poles are all in the left half plane; which is good

for us. Because normally when you have a resistor and a capacitor, you will get left half

plane poles.

Normally, such a system will not behave in an unexpected manner. So, then we will look

at the angle of the loop gain. Now, it turns out that for this particular system; at very low

frequencies the angle of the loop gain is 0. And at very high frequencies, the angle of the

loop gain goes to minus 90 degrees. So, the loop gain angle stands 0 to 90 degrees; it can

never reach 180 degrees.

So, what this means for us is that the system is unconditionally stable and this is great

news for us. What is the problem with 1 pole system? As we have seen before the 1 pole

system can only have limited gain. So, the maximum gain that you can get for example,

from a common source amplifier; which was an example of a 1 pole system that we saw;

is only the intrinsic gain of a transistor which is approximately g m r ds.

Now, this g m r ds number is probably a few tense to maximum maybe hundred or so in

modern processes. So, therefore you just cannot get enough gain; let us say g m r ds was

100, that is just not good enough to build a good ohm amp.
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Then next we try to build a 2 pole system, if you look at a 2 pole system; we say that A

of s is some A naught by 1 plus s by omega p, the whole square.

So,  in  other  words  what  I  mean  is;  I  am cascading  two  1  pole  amplifiers.  So,  for

example, if the gain of 1 pole amplifier was around 100; if you cascade them, you can

easily get a gain of 10000; so that is good news for us. Now, we need to look at the

impact of doing this on stability. So, now what do we know about this system; so the nice

thing is again it has left half plane poles, the phase spans 0 to minus 180 degrees but

reaches minus 180 degrees; only at omega equals infinity. 

So, technically this system is unconditionally stable; so this is also great news for us.

Unfortunately, if you look at the time domain response of the system; as we know at 2

pole system or rather a second order system is defined by two parameters, which is the

natural frequency and the damping factor.

So, what this means is that will be a particular value of A naught on omega p; where the

system will start to ring. What do we mean by saying the system will start to ring? So,

normally you expect a well behave system to only have an exponential solution. It turns

out a second order system is also capable of having a sinusoidal solution, which means

the step response of the system could have ringing. And we can easily calculate the value

of gain at which this happens and it turns out that this happens at a fairly low value of A

naught  f,  so this  is  a  problem.  So, even though the system is  technically  stable;  the

transient response in closed loop could take a long long time to settle, so that is a bad

thing for us.
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So, now we will take a 3 pole system and look at its response. So, what that means, is

that f times rather A of s is A naught by 1 plus s by omega p whole cubed. In other words,

this system is created by cascading three 1 pole systems; clearly the maximum possible

value of A naught can be quite high.

Now let us look at 1 plus L g of s or rather let us look at the closed loop gain of the

system.  It  turns  out  that  the  closed  loop  gain,  you  can  write  it  as  some  numerator

polynomial by denominator polynomial. I will give you the final expression; I will leave

this is the homework for you. So, it turns out the denominator polynomial D of s can be

written in this fashion, it can be written as a polynomial in this fashion. 

So, D of s is 1 plus 2 s by or rather A naught f omega p plus oh sorry; so, it is 1 plus; 3 s

by omega p into 1 plus A naught f; plus 3 s squared by omega p squared into 1 plus A

naught f; plus omega p cubed by; I am sorry s cubed by omega p cubed into 1 plus A

naught f. So, all I have done is I have taken this particular expression; I have plugged it

into the closed loop gain expression, which is 1 over f times; f A of s by 1 plus f; A of s.

And I have made it look like a polynomial n of s; over another polynomial D of s and I

am looking at the denominator polynomial.

We know that the system becomes unstable when the denominator polynomial goes to 0.

So,  what  does  that  mean for  us? We need to  find  out  the  roots  of  the  denominator

polynomial D of s. So, now, I am going to make a simple substitution; I am going to say



x is s by omega p; just to make my writing easier. So, what I am going to look at is; D of

x is 1 plus 3 x by 1 plus A naught f; plus 3 x squared by 1 plus A naught f; plus x cube by

1 plus A naught f.

(Refer Slide Time: 10:57)

And which means I need to find out the roots of the polynomial. So, roots of D of x equal

to 0 are the same as roots of 1 plus A naught f; plus 3 x; plus 3 x squared plus 3 x cubed

equal to 0. Now the roots of this particular polynomial are the same as roots of 1 plus x

the whole cubed equals minus A naught f or x is equal to minus 1; minus A naught f;

whole power 1 by 3.

Now, it is clear that the cube-th root of A naught f will have three roots and each one of

them will give you a particular solution. However, it turns out that for values of A naught

f larger than a particular value, the system starts to have sinusoidal solutions and more

importantly the complex conjugate roots corresponding to the sinusoidal solution, move

into the right half plane which clearly points to an unstable system because it points to a

sinusoidal solution whose amplitude is increasing.

So, it turns out that happens at a critical value of A naught f; which is 8 for stability. So,

what I mean is; if A naught f is greater than 8. So, you have right half plane poles with

complex conjugate roots. Now, as you can see this is clearly a problem, because we

started of assuming that you can cascade; multiple single pole amplifiers to get more and

more gain.



But this is telling you that if you try to do that for example, for a 3 pole system; even if

the loop gain is greater than 8, the system will start to become unstable. Remember that

we want a loop gain A naught f; which is much much larger than 1. So, you are talking

about thousands of tens of thousands type of numbers. So this is clearly not the way to

go.

In  the  next  lecture  we  will  see  how  we  can  achieve  large  A naught  f  while  still

maintaining stability.


