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So in this little lecture, we will first talk about Controllable Decomposition. So, why do 

we need to do this? So, in the previous lecture, we saw basics about controllability that the 

system is controllable, if the rank of a certain matrix is 𝒏, and if that rank is 𝒏, then I could 

actually do something called the pole placement to solve control problems in the state 

space ok.  

So, now we did not answer the question what if the system is not completely controllable, 

what if the rank is not 𝒏, but it is some number 𝒎 which is less than 𝒏 ok. So, let’s quickly 

check what we can do with those kind of systems ok. 
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So, let’s say that I start with the system 𝒙̇ = 𝑨𝒙 + 𝑩𝒖. And suppose that the rank of this 

matrix [𝑨: 𝑨𝑩: … … 𝑨𝒏−𝟏𝑩] is some number is some number 𝒎 which is less than 𝒏 ok. 

Let’s to keep it simple; let’s do it with the help of a little example. Where                                

𝑨 = [
𝟎 −𝟏 𝟏
𝟏 −𝟐 𝟏
𝟎 𝟏 −𝟏

]; 𝑩 = [
𝟏 𝟎
𝟏 𝟏
𝟏 𝟐

] ok. So, the controllability matrix 𝑪, which I call is 𝑩, just 



 

 

be 𝑪 = [
𝟏 𝟎 𝟎
𝟏 𝟏 𝟎
𝟏 𝟐 𝟎

  
𝟏 𝟎 −𝟏
𝟎 𝟎 𝟎

−𝟏 𝟎 𝟏
]; 𝑨𝑩 would be [

0 1
0 0
0 −1

], and 𝑨𝟐𝑩 would be [
0 −1
0 0
0 1

] ok. 

And we can easily check here that the rank is 𝟐 ok.  

Now, what do we do when the rank is 𝟐? I cannot completely control the system because 

what I learnt ok, even though we didn’t do the proof is that for to place all the poles, we 

need the system to be completely controllable ok. So, let’s do a bit of a magic here. Let’s 

say I want to transform the system into something else right. And we knew that, so that 

𝑷−𝟏𝑨𝑷 is a good transform which transform the system from some 𝒙 coordinates to certain 

𝒛 coordinates ok. 

So, let’s construct this 𝑷 in a nice way now. Let say 𝑷 is I take two independent columns 

from this controllability matrix. So, the obvious ones are directly from the 𝑩 matrix. Now, 

can I add another column here such that the rank of this 𝑷 is 𝟑 right. So, I am giving you 

two independent vectors in 𝑹𝟑, and I am asking you to construct something else which is 

again independent of the first two right. A simple choice would be something like this ok. 

Now, this is an invertible matrix this 𝑷. So, I can always do this transformation. 

So, what will the new 𝑨̃ be? 𝑨̃ = 𝑷−𝟏𝑨𝑷  would turn out to be something like this, 

[
𝟎 𝟏 𝟏
𝟎 −𝟏 𝟎
𝟎 𝟎 −𝟐

]. And what is 𝑩̃? 𝑩̃ = [
𝟏 𝟎
𝟎 𝟏
𝟎 𝟎

] ok. So, let’s carefully look at this ok. So, let’s 

say if I write the system like this right, [
𝒙𝟏̇ = 𝒖

𝒙𝟐̇ = −𝒙𝟐
], it can be easily checked that this 

system is not completely controllable. This system which means which because you know 

you can see there is no direct control which is entering the 𝒙𝟐 coordinate ok. 

So, here I can clearly see which of the two states is not controllable, you can easily say 

that 𝒙𝟏 is controllable, and 𝒙𝟐 is not ok. Now, what happens when I do a transformation 

like this? If I look at this thing here, if I say I have this new coordinates in the 𝒁𝟏̇, 𝒁𝟐̇, 𝒁𝟑̇ 

is this new 𝑨 𝑋 𝒁 𝑋 𝒖. That 𝒁𝟑 has no influence of the control, because the entries of the 

𝑩 are 𝟎. Whereas, 𝒁𝟏 and 𝒁𝟐 are actually controllable, because there is some, say some 

numbers coming in here.  

So, what I have done with this transformation is I have split the system into a controllable 

part and an uncontrollable part. So, this is my controllable part, and this thing is my 

uncontrollable part ok. So, what did we do here? We, well, what was given to us is, were 



 

 

the system which was not completely controllable, in such a way that the rank of this 

controllability matrix was some number 𝒎.  

So, based on this 𝒎, we pulled out 𝒎 -independent vectors from the controllability matrix. 

I add remaining 𝒏 − 𝒎 vectors such that the rank becomes 𝒏, and I do this kind of 

similarity transformation. So, while doing this, I have a system where I can clearly see 

which part is controllable and which part is uncontrollable. And this is what is referred to 

as the controllable decomposition ok.  
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So, there exist a similarity transformation we exactly saw ok, I called it 𝑷 there, but it’s, 𝑻 

here, doesn’t really matter. So, the 𝑻−𝟏𝑨𝑻 is something like this. So, you have the 

controllable part; you have the uncontrollable part right. And even the 𝑩 splits very nicely 

into the controllable and uncontrollable part, 𝑪 will have some numbers; this is not really 

important ok. 

So, what is interesting here right? So, I have a system now which is explicitly written in 

terms of 𝒙𝒄 which is the controllable states, 𝒙𝒖  which are the uncontrollable states ok. 

What I want is the transfer function of this, well, I can simply write down the formula for 

the state space to the transfer function form [𝑪][𝒔𝑰 − 𝑨]−𝟏[𝑩] + [𝑫] ok. So, I will skip 

these computations. 
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But what is interesting to see is that the transfer function will have numbers or the entries 

which are only corresponding to the controllable part 𝑨𝒄  is the one which is corresponding 

to the controllable part; 𝑩𝒄 is also the controllable part; 𝑪𝒄 is also the controllable part.  

So, what is important here is that the transfer function is only the transfer function of the 

controllable part. Therefore, whenever I give you any transfer function, it should, I could 

do anything with that transfer function if and only if I know that this is a transfer function 

of a completely controllable system. Otherwise, you see that some poles of the system go 

missing, or there is some kind of inherent pole-zero cancellation whenever the system is 

not completely controllable ok. So, what can we do with this kind of systems right? 
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So, say I will just take the other example which where [
𝒙𝟏̇

𝒙𝟐̇
] = [

𝟎 𝟎
𝟎 −𝟏

] [
𝒙𝟏

𝒙𝟐
] + [

𝟏
𝟎

] 𝒖 ok, 

which can be written again as 𝒙𝟏̇ = 𝒖, 𝒙𝟐̇ = −𝒙𝟐 ok. What can I do with this system? 

Well, you can see that I can actually control the first state provided that the second state is 

stable. 

What does it mean when I say this? Take instead a system which is like this    

[
𝟎 𝟎
𝟎 𝟏

] [
𝒙𝟏

𝒙𝟐
] + [

𝟏
𝟎

] 𝒖, which means this is the same system 𝒙𝟏̇ = 𝒖, 𝒙𝟐̇ = +𝒙𝟐. 

And let’s see how the uncontrollable part of the system behaves here and here. The 

uncontrollable part here is actually stable, because I can just directly solve for 𝒙𝟐̇ = 𝒙𝟐. 

This is unstable, so this is bad news right. So, I can do anything or I can there is some hope 

when the system is not completely controllable if and only if the uncontrollable part is 

stable by itself.  

Here I could do nothing with the system, because whatever smart kind of input I choose 

whatever expensive, whatever you know the best kind of 𝒖, my 𝒙𝟐 is still unstable, which 

means that the overall system is unstable. So, there is nothing I could do with these kind 

of systems right.  

And therefore, we have now a weaker notion of controllability that is stabilizability. For 

the system 𝑨 𝑩, if the uncontrollable modes are stable, then the system is said to be 



 

 

stabilizable. I can do something with the system only if the uncontrollable modes are stable 

ok. And then as a very small extension to the definition of controllability. So, far we have 

talked about the state going from point 𝑨 to point 𝑩 in some finite amount of time, and we 

just relaxing at the point 𝑩 is actually the origin ok.  

So, what do I say, well, I want the output to be controllable not the states, because typically 

I have 𝒙𝟏̇ = 𝑨𝒙 + 𝑩𝒖, why is some 𝑪𝒙 sometimes some 𝑫𝒖. So, the definition translates 

can I transfer the output with some initial value 𝒚(𝒕𝟎) to some value 𝒚(𝒕𝟏)in finite time 

and with application of some control.  

This again I will just leave for you to derive that the corresponding rank condition would 

just be in terms of the output matrix also [|𝑪𝑩|| 𝑪𝑨𝑩| … . |𝑪𝑨𝒏−𝟏𝑩| 𝑫 ]should be 𝒑. And 

this is 𝒑 is like that the number of outputs here ok. 

So, what have we learned here is, what do we do if the system is not completely 

controllable. If the system is completely controllable, I can just use 𝒖 = −𝑲𝒙 to achieve 

the desired performance in terms of placing the poles at the appropriate locations.  

Even in root locus, what we were doing, we are just shifting the poles right, via the root 

locus shifting the dominant poles to the left depending on if you wanted a faster response 

right, and also poles corresponding to when we were doing the lag compensation right. So, 

essentially playing around with the poles, this also is something similar ok. 
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So, what do we assume when we say 𝒖 = −𝑲𝒙, we always assume that 𝒙 is measurable 

that somebody is actually giving me 𝒙. Sometimes now what I am; what am I; what am I 

measuring here? I’m measuring the outputs 𝒚 = 𝑪𝒙, let’s just ignore 𝑫 for the moment 

right.  

So, 𝒙, so given the measurements 𝒚, when can I get all of 𝒙? This is possible if and only 

if the output matrix 𝑪 is invertible ok, which means that the number of states and the 

number of outputs are the same, or this matrix 𝑪 should be invertible. But this is not 

possible all the time, because sometimes we will have maybe only 5 outputs measured 

when the complete total number of states is 10 ok.  

So, in that case, what do we do, is there again somehow? So, can we use the input we know 

the 𝒖 all the time and the output measurements over a time interval to reconstruct the states, 

now reconstruct 𝒙(𝟎) for example.  
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So, this is what leads to the definition of observability. I’ll not go into the details of this, 

but we will just understand what it means. So, I will just stop by just giving a definition 

and how to check the conditions of on observability ok. 

So, what is a definition? The definition says that the system is observable at time 𝒕𝟎 if this 

𝒙(𝒕𝟎) can be determined by the observation of the outputs over the time interval 𝒕𝟎 to 𝒕𝟏 

ok. Again these are important because all states may not be measurable. So, a simple 



 

 

computation like earlier would suggest that a system is completely observable if and only 

if the rank of this observability matrix is 𝒏 ok. So, it is of dimension whatever 𝒏𝒑 𝑋 𝒏 

matrix which is this one, this is called the observability matrix.  

So, again given the properties of the system which essentially come from 𝑪 and 𝑨, we can 

determine if the system is completely observable or not. And also note that the matrix 𝑩 

does not really play any important role in this ok. So, this is where we will end. We will 

try to post some problems related to you know the various concepts which we have derived 

in state space analysis. And also possibly related to the observer or the observability 

matrix. 

And this is actually this covers a you know good amount of stuff related to the state space 

analysis. And now I will not go deeper into how to design observers and so on, or how to 

design a observers and controllers simultaneously for a system that we will leave for some 

advanced course in control. But for the moment this is all what I thought would be useful 

to you to give you some insights on the theory on state space. 

So, this is the last lecture of the entire course. And I hope you have you enjoyed the course, 

and you had a good time, and we actually had a good time preparing the course content, 

interacting with you while we were doing through the discussion forums. And well, good 

luck for your final exam if you are taking those.  

And thanks very much. 


