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Hey guys. Welcome back to this lecture series on Control Engineering. And, so today we’ll 

keep continuing with the state space analysis. So, far what we have seen is given a system 

how to write it down in the state space form, given a non-linear system how would you 

linearize that around an equilibrium point and analyze stability.  

So, today we will do further or go a little further deep into this topic and essentially deal 

with what is called as a controllability, and what does controllability mean, is a system 

always controllable? what if it is not always controllable? and if it is controllable how do 

we control it? So far we have seen control methods or design methods using the root locus 

where we take the help of a root locus plot to achieve the desired closed-loop specification. 

Similarly, we did some design problems with the help of bode plots. So, let’s see what all 

that means, in the context of a state-space analysis, ok. So, this let us quickly write down 

what have we seen so far. So, far we have had state-space representations. And what we 

saw, yes in the other lectures was three different forms. 
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So, one was the controllable canonical form. Similarly, we had the observable form and 

also the diagonal form. And we also saw how to convert a given system into its diagonal 

form. There are several other details of the diagonal form in the terms of the Jordan form, 

but I will try to skip that, ok. 

The first is now how to convert system from a controllable to observable or observable to 

a diagonal or whatever. So, if I say I have a transfer function and I convert it into a state-

space, now is the state space representation unique? and how are these three related to each 

other? So, let’s do it in a little abstract way. 

Let’s say or whenever I am converting. So, let’s say I have a system which is like              

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 and I say how do I convert it from one form to the other. And we had earlier 

seen that we could actually do a transformation of 𝑨 matrix to something which looks like 

𝑷−𝟏𝑨𝑷, ok. So, where does this come from? So, let’s say I start with 𝒙 I define a new 

variable 𝒛 and say 𝒙 is related to 𝒛 via this matrix 𝑷, ok. So, this matrix 𝑷 is invertible. So, 

𝑷 is, ok. So, what happens now? 

So, if I write down this in terms of the 𝒛 coordinates, I will have 𝒁 = 𝑷−𝟏𝑿 which means 

that 𝒛̇ = 𝑷−𝟏𝒙̇. What is 𝒙̇? 𝒙̇ = 𝑨𝒙 + 𝑩𝒖. And what is 𝒙? 𝒙 = 𝑷−𝟏𝒛. So, I have if I write 

it down again, so 𝒙 in terms of 𝒛 would be (𝑷−𝟏𝑨𝑷)𝒛 + 𝑷−𝟏𝑩𝒖.  

So, I have a system in the new coordinate 𝒛 which looks like let me call this say 𝑨̃𝒛 + 𝑩̃𝒖, 

where this guy 𝑷−𝟏𝑨𝑷 is the 𝑨̃ and 𝑷−𝟏𝑩 is the 𝑩̃, ok. 

So, the invertibility is needed because well we need the matrix to be invertible here and 

you can always go back from the 𝒙 to 𝒛 and 𝒛 to 𝒙 and vice versa all the time, ok. So, given 

a system in a certain way say it’s in the observable form I could go to the controllable form 

via some transformation 𝑷, ok. What is this transformation is what we will see a little later, 

which kind of 𝑷 to use to get from a standard form to a controllable form, standard form 

to an observable form, and so on, right, ok. 

Now, what has changed here? Now, can I say that the system in the 𝒙 coordinates is the 

same as the one in the 𝒛 coordinates? Well, let’s see. So, what we are interested typically 

is in the pole locations, ok. So, we’ll compare the characteristic equation of this guy to the 

characteristic equation in 𝒛, characteristic equation of the system written down in the 𝒙 



coordinates to the characteristic equation of the system written down in the 𝒛 coordinates, 

ok. 

So, let’s see. So, if I write down the characteristic equation for the system in the 𝒛 

coordinates I’ll have |𝝀𝑰 − 𝑷−𝟏𝑨𝑷|. So, this will be I can write this down as  

|𝝀𝑷−𝟏𝑷 − 𝑷−𝟏𝑨𝑷|, I am just multiplying by 𝑷 and its inverse.  

So, this will be |𝑷−𝟏(𝝀𝑰 − 𝑨)𝑷|, where 𝑰 is identity matrix times 𝑷. I am just using some 

basic properties of matrix, the determinant just come out like this, (𝝀𝑰 − 𝑨)𝑷. So, what am 

I left with say this guy cancels with this guy and I am just left with |𝝀𝑰 − 𝑨|.  

So, if I equate this to 0, I get the poles. So, which means that if I write this down in 

summary |𝝀𝑰 − 𝑷−𝟏𝑨𝑷| is |𝝀𝑰 − 𝑨| = 𝟎. So, the characteristic equations are the same which 

means that the poles here and the poles here would exactly be the same.  

So, almost like nothing changes, right. So, I am exactly dealing with the same system. I 

am just doing a little bit of coordinate transformations. And we all would have done 

coordinate transformation in some math course- vector calculus, where we transform from 

a rectangular to a polar coordinate, cylindrical coordinates and nothing changes in the 

system. Something very similar is happening here, right.  

So, each and each of these forms the controllable, observable, and diagonal are useful in 

their own way. A bit of the analysis which we will do as we progress through this lecture, 

ok. 
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So, the next thing is controllability. So, let’s again look at it with the help of an example, 

ok. 
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So, let’s say I have say I am moving in a plane, just for simplicity, this is just for illustration 

and say I have a simplified model of a car and say all I could do is I can just control, but I 

can just move in this direction, right. I can just go forward I can go back, but steering is 

not allowed. So, this movement is not allowed, ok.  



Now, with the application of input 𝒖 in this direction I can move forward, right in this 

way, application of 𝒖 here I can move backwards. Now, can I say that this simplified 

version of a car, the picture is not drawn very well, but can we see that this is actually 

controllable? Right. But I am just allowed to move this way or this way.  

So, if you look at it from a normal car objective, whenever we drive a car what would we 

want is we want to drive across the entire domain that we have to go this way, you want 

to go, this way, this way, and so on, right. So, what should also be allowed is and I start 

from that position and I end up here, ok. But this control action u will not allow me to go 

to this position essentially because the steering is not allowed, ok.  

Now, how do we qualitatively analyze this or when is a system controllable? The system 

here, with just the two 𝒖’s which either goes in this direction of 𝒙𝟐-positive direction or in 

the negative direction of 𝒙𝟐, is this controllable or for complete controllability I also need 

the steering, right. So, that I can go from this position to actually this position, ok.  

So, let’s first understand this with the help of an example, right. So, I have a system well 

in the this is a very beautifully written down in the diagonal form 𝒙𝟏̇ = −𝒙𝟏 + 𝒖,           

𝒙𝟐̇ = −𝒙𝟐 + 𝒖, ok.  

So, these are essentially differential equations if I just try to solve those I get something 

like this that 𝒙(𝒕) starting from initial conditions we’ll have a solution like this, which 

essentially means I will ask myself a question given initial states 𝒙𝟏(𝟎) and 𝒙𝟐(𝟎) what 

are the states 𝒙𝟏 and 𝒙𝟐, I can reach after time 𝒕, ok. 
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So, if I again were to draw a graph of this, so let’s say I am moving again in 𝑹𝟐. Let’s say 

𝒙𝟏 and say 𝒙𝟐, ok. And say I am starting, for simplicity say I am starting from the origin, 

right. So, I have a system in 𝑹𝟐 again of the form 𝒙̇ = 𝑨𝒙 + 𝑩𝒖.  

Now, I would ask myself a question with any given u which is arbitrary unconstrained, but 

bounded what are the directions can I move? So, let’s say I can move this direction, this 

direction, this direction, this direction, all 𝟑𝟔𝟎°, right, right. So, this would mean that 

starting from origin I can reach any other point in the 𝒙𝟏, 𝒙𝟐 plane.  

So, if I ask a question what are the points one can reach starting from the origin? In the 

application with appropriate control. If I say that I can reach all of this space in the plane 

any point, then I can say that I can reach entire of 𝑹𝟐 or the reachable subspace is 𝑹𝟐, the 

entire 𝒙𝟏, 𝒙𝟐 plane on both directions, ok. 

Similarly, I can also say well starting from any other points or say what are the set of initial 

conditions that can steer the system to the origin. So, if I say if I start from here, so this is 

my 𝒙𝟏, 𝒙𝟐 plane by the application of some control can I go back to the origin? Starting 

from here can I go back? Right and then, if I find the set of all points that will give me the 

controllable subspace, ok.  



What is holistic about this origin? Nothing really. I can even say what are the set of initial 

conditions which I can reach this point or this point there is nothing really holistic about 

this or even this origin here.  

So, the first thing reachability will tell me what are the points I can reach starting from a 

given point which in this case is the origin. Controllability would mean what are the points 

or what are the initial conditions that will steer me to the origin by application of proper 

control input. So, in the linear time-invariant case it turns out that these two are similar, 

they are exactly similar. Reachability would mean controllability and vice versa. If I could 

go from this point to this point, I can actually come back from this point back to the origin, 

ok. 

So, if I go back to the example here if I say well if I am not allowing the steering position 

the only directions I can move are this one that I can move in 𝒙𝟐 direction on both ways, 

but I cannot move in the 𝒙𝟏 direction. So, this movement is not allowed or it’s not possible 

because I cannot steer. I cannot turn, it this way or even this way, ok. So, let’s see more 

mathematically what these things mean.  

So, if I say that a system like this starting from any arbitrary initial conditions what are the 

points it can reach in time 𝒕. Well, if I also additionally impose the condition that well I 

just want to reach the origin like I did here, right. In this example here, my control problem 

was to find out the set of points sorry the set of points which will steer me to the origin.  

So, let’s say here that 𝒙(𝒕) is actually the origin, ok. So, what will happen? So, I have a 

zero here 𝒆−𝒕 [
𝒙𝟏(𝟎)

𝒙𝟐(𝟎)
] and this entire guy. So, it turns out if I just rearrange this terms 

properly that the set of initial conditions 𝒙(𝟎) is a set which looks like this −𝜶(𝒕) [
𝟏
𝟏

]. 

What is 𝜶? 𝜶 is this thing, ok.  

So, in this thing what is unknown? I know the initial condition 𝒙𝟏(𝟎), 𝒙𝟐(𝟎), I know the 

final condition which is the origin, I can compute these guys, only unknown is the input. 

So, does there exist an input, right which can steer the states to the origin, or what are the 

states if I just plot this down in on a piece of paper. So, it looks like this, right. 
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The points which can take me to the origin are only in the green line. For example, if I 

have start at a point say in the fourth quadrant or the second quadrant or any other point 

which is outside this green line I will not be able to reach the origin, ok. 

Now, let’s see some other example or in this example, the controls controllable subspace 

is of dimension one. So, I guess cannot travel all points in the state space it is something 

similar to what was happening here, right. I was not allowing steering of the wheels, so I 

can only move in the positive or negative 𝒙𝟐 directions, ok. 
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So, let’s see some other example. I just have again the system in the diagonal form with 

entries [
−𝟏 𝟎
𝟎 −𝟐

], control as [
𝟏
𝟐

] 𝒖, ok. Now, if I just write down again the solution of this 

say given certain initial conditions that I want to go to the origin, the equation would 

transform to something like this.  
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And if I plot what is the controllable subspace or what are the points starting which I can 

reach the origin it turns out to be the entire subspace. So, I can start any point in the first 

quadrant, second, third, or fourth, all will steer me to the origin or steer the system to the 



origin, right. So, any point in 𝑹𝟐 can be steered to the origin, ok. So, this leads us nicely 

to define the concept of controllability.  

Now, given any system would I keep computing these solutions all the time right; if I have 

a system which is of dimension 5, it may really be difficult for me to compute all the 

solutions, right. So, what we will see is given the properties of system which is                   

𝒙̇ = 𝑨𝒙 + 𝑩𝒖. The properties of the system are the 𝑨 matrix and the 𝑩 matrix. So, given 

this information on the 𝑨 matrix and the 𝑩 matrix can I say if the system is controllable or 

not?.  

So, what is the definition of controllability first? So, based on what we had argued so far.  

(Refer Slide Time: 18:37) 

 

A system is said to be controllable at t naught, right, if it is possible to transfer the system 

from any initial state 𝒙(𝒕𝟎) to any initial state in finite amount of time. So, the key here is 

I should be able to reach from point 𝑨 to point 𝑩 in some finite amount of time. Doesn’t 

really help me much if I can say that I could travel from Bombay to Delhi in like an infinite 

amount of time, right. So, you want to travel or your car should be designed in such a way 

that you travel in finite amount of time, ok. 

So, before I solve any control problem it is important for me to check if the system is 

controllable or not, ok. So, let’s see how we do that. So, I am given a system in the state 

space form  𝒙̇ = 𝑨𝒙 + 𝑩𝒖, 𝒚 = 𝑪𝒙 + 𝑫𝒖, ok. So, it will turn out that we will just shortly 



derive this result quickly that the system is controllable only if this matrix 

[𝑩|𝑨𝑩| … . |𝑨𝒏−𝟏𝑩|] it will be of dimension 𝒏 𝑋 𝒏𝒎, if this rank is 𝒏 then the system is 

controllable, right and this is both a necessary and sufficient condition, ok. 
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So, how do we derive this? We will quickly do this we won’t really try to memorize a 

derivation we will just, but we will try to make use of this relation, the rank condition for 

controllability, ok. 

So, I start with this equation  𝒙̇ = 𝑨𝒙 + 𝑩𝒖, the outputs really do not matter towards at 

the moment. So, we can just forget about this for a moment. So, 𝒙̇ = 𝑨𝒙 + 𝑩𝒖, the solution 

would look something like this. So, by now you also know how to compute 𝒆𝑨𝒕, ok. 

So, given any initial condition assume that I want to reach the origin in some time 𝒕𝟏, I 

will ask when does the solution exist. What does it mean by the solution? Again, if I look 

at this expression I know the initial condition 𝒙(𝟎), I know the final condition 𝒕(𝟎), I just 

want to find out, I also know the matrix 𝑨, I also know the matrix 𝑩, all I want to find out 

is can I reach the origin starting from any arbitrary initial condition by application of some 

control. So, this is the unknown.  

So, we will just use some properties of how to compute the 𝒆𝑨𝒕, you can refer to the earlier 

lectures which we had on this. So, 𝒆𝑨𝒕 can be written as some series in powers of 𝑨 in this 



way, ok. So, what I do is I just plug this in over here. Again, in this expression I am just 

finding out if there exists a 𝒖, the only unknown in this equation is the 𝒖.  

So, if I substitute for 𝒆−𝑨𝝉 over here what I end up is equation which looks like this 𝒙(𝟎) 

is summation of this 𝒙 of this summation term in the powers of 𝑨 times some numbers 𝜷𝒌. 

What is this 𝜷𝒌? So, whatever is in the ∫ 𝜶𝒌(𝝉)𝒖(𝝉)𝒅𝝉
𝒕𝟏

𝟎
, I just called them 𝜷𝒌. I can 

always compute this, right this is always some number, ok. 

So, it will turn out that if I, you know I can also write this as 𝒙(𝟎) = 𝑩𝜷𝟎. If I just take 

for 𝒌 = 𝟎 what I will have is 𝑨𝟎then which is identity. So, it will be 𝑩𝜷𝟎 here. For 𝒌 = 𝟏 

I will have 𝑨𝟏𝑩𝜷𝟏, this is 𝑨𝑩𝜷𝟏, and so on, until I reach 𝒏 − 𝟏, ok. 

Now, where does the unknown sit in here? The unknown sits in here in this 𝜷s, right. The 

𝒖’s appear in 𝜷. So, when does the solution exists? A solution will exist if and only if this 

matrix is invertible, right. [𝑩|𝑨𝑩| … . |𝑨𝒏−𝟏𝑩|] is invertible, ok. So, this is exactly the rank 

condition which we are trying to derive here that the system is controllable if and only if 

this matrix is invertible, sorry, not invertible, if this matrix is of rank 𝒏, ok. Similarly, a 

sorry not about the invertibility, but this matrix should be of rank 𝒏, ok.  

So, this is the condition which we will use. We may not necessarily you know remember 

this proof all the time, but what is important is to remember the condition that the rank of 

this matrix should be 𝒏, ok. 

So, once I know that the system is controllable, what do I do with it? How do I then control 

the system? So, when I was doing the design with the root locus or with the bode plot I 

always knew that well I can use either a lead compensator a lag compensator, or even more 

simply the gain adjustment. If the gain adjustment doesn’t work, then I go to one of these 

lead or lag compensators depending upon the specifications of the problem. So, how does 

that translate in this case? 
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So, let’s come to a problem. Now, let’s say that for a given system which is of this form 

𝒙̇ = [
𝟎 𝟏

−𝟔 −𝟓
], can we design a controller 𝒖 which I call as a state feedback controller 

which has the following specifications that the damping coefficient is 0.707 and the 

response the peak response time is under 3.14 seconds, ok. 

So, there are a couple of methods which we could use in this. So, let’s just write try to 

write down what the problem statement is for us.  
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So, first is the peak time is given to us the 𝒕𝒑, peak time should be less than 3.14 or 𝝅, ok. 

And it’s also said that the 𝛇 the damping coefficient should be 0.707, ok. 

So, now based on this I need to compute what is 𝝎𝒅 and what is 𝝎𝒏. So, if you remember 

the formulas for the peak time, so I think 𝒕𝒑 = 
𝝅

𝝎𝒅
 and this turns out that 𝝎𝒅 = 𝟏. And 𝝎𝒅 

was related to 𝝎𝒏; why are the damping coefficient with this formula, 𝟏 − 𝜻𝟐 which will 

give us that 𝝎𝒏 = 𝟏. 𝟒𝟏𝟒, ok. 

Now, what does this mean? Right. So, first is well, it says design a state feedback 

controller. So, a state feedback controller typically is of the form 𝒖 = −𝑲𝒙, or in this case 

well, so the system is of dimension 2, I will have a 𝑲𝟏 𝑲𝟐; 𝒙𝟏 and 𝒙𝟐, ok. Now, how does; 

what is the original system?  

Original system is of the form 𝒙̇ = [
𝟎 𝟏

−𝟔 −𝟓
] 𝒙 + [

𝟎
𝟏

] 𝒖; ok. So, I could just quickly check 

what would be the 𝛇 and 𝝎𝒏 for the open-loop system, right. When 𝒖 = 𝟎 I just would say 

check it with the help of this characteristic equation |𝒔𝑰 − 𝑨| = 𝟎, right. And it is easy to 

check that the open-loop specifications are much further away from what is a desired 

closed-loop specification and therefore, we need this control, ok. 

So, a first exercise which you could do is to check if the system is controllable. It means 

just quickly find the rank of 𝑩 and 𝑨𝑩, and this should definitely be equal to 𝟐 and you 

can easily find out that the system is controllable. Also, it’s easier to check because it is 

exactly in the controllable canonical form, ok.  

So, let’s try solving this problem, right. So, what happens? So, if I have a 𝒖 of this form 

my closed-loop system looks like this [
𝟎 𝟏

−𝟔 −𝟓
] [

𝒙𝟏

𝒙𝟐
] + [

𝟎
𝟏

] 𝒖 , 𝒖 = −𝑲𝒙. So, this thing 

here will be a −[𝑲𝟏 𝑲𝟐] [
𝒙𝟏

𝒙𝟐
] which will look something like this,    

[
𝟎 𝟏

−𝟔 − 𝑲𝟏 −𝟓 − 𝑲𝟐
] [

𝒙𝟏

𝒙𝟐
], ok. 

So, now the closed-loop characteristic equation should be such that these poles or the 

eigenvalues should satisfy this condition, ok. Now, when does a second-order system 

satisfy this condition? Right. So, how should which mean, ok; this is what is desired in the 

closed-loop case, ok. So, how does 𝒔𝟐 + 𝟐𝜻𝝎𝒏 + 𝝎𝒏
𝟐 terms look like?  



So, based on these two specifications of 𝝎𝒏 = 𝟏. 𝟒, 𝜻 = 𝟎. 𝟕, this should look something 

like this 𝒔𝟐 + 𝟐𝒔 + 𝟐 = 𝟎, ok. Exactly I am just putting in the values of 𝜻 and 𝝎𝒏 as 

desired, ok. Now, this is the desired closed-loop characteristic equation which will ensure 

that the closed-loop has a peak time of 3.14 or less and 𝜻 the damping coefficient of 0.707.  

Now, what would I do? If this is desired now I compute this guy, |𝒔𝑰 − 𝑨 + 𝑩𝒌| as I would 

call it, where does this come from if I just say in a standard system 𝒙̇ = 𝑨𝒙 + 𝑩𝒖 with 

𝒖 = −𝑲𝒙. I can rewrite this as 𝒙̇ = 𝑨𝒙 − 𝑩𝑲𝒙. So, the characteristic equation of the 

closed-loop system would look like this. So, I would compare this |𝒔𝑰 − 𝑨 + 𝑩𝒌| with this 

guy, ok.  

So, now I have an equation with two unknowns, ok. So, let’s quickly write down what is 

the characteristic equation. 𝒔𝟐 + (𝟓 + 𝑲𝟐)𝒔 + (𝟔 + 𝑲𝟏) = 𝟎. So, I have to solve for 𝑲𝟏 and 

𝑲𝟐. How should this look like? Well, this should exactly look like this, ok. 

So, this equation, this characteristic equation should be equal to this characteristic 

equation, right. So, therefore, I can just compare the coefficients, right which is                  

2 = 𝟓 + 𝑲𝟐  and 2 = 𝟔 + 𝑲𝟏 which means 𝑲𝟐 = −𝟑 and 𝑲𝟏 = −𝟒, ok. Let’s assume. So, 

how do we do this, take or just check what are the closed-loop specifications, ok? 

This will translate to an appropriate characteristic equation of the closed-loop; this is a 

desired one. On the right-hand side, I need to find out what are the gains 𝑲𝟏 and 𝑲𝟐 that 

will achieve this desired characteristic equation here, ok. And then I just write this down, 

I compare the characteristic equation on the right to the desired characteristic equation on 

the left, I just equate the coefficients, ok.  

So, in some problems it’s also the problem specifications could also be not in terms of 𝜻 

and 𝝎𝒏, but directly in terms of the desired closed-loop poles, ok. 
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So, if you say that, given a system, 𝒙̇ = 𝑨𝒙 + 𝑩𝒖, this could be 𝒙 is say in some 𝑹𝒏, ok. 

Now, the problem could be of find a control law again 𝒖 = −𝑲𝒙 which places the closed-

loop poles at say some values 𝝁𝟏 till 𝝁𝒏.  

So, earlier we had the specification in terms of some system performance as a peak time, 

it also be in a term of times, in terms of the settling time or the rise time, damping 

coefficient and several other things. So, here I have just have specifications directly in 

terms of where the poles of the closed-loop system be, ok. 

So, in this case, what I will do? Well, what is a desired characteristic equation? The desired 

characteristic equation would be I just look at this 𝒔 − 𝝁𝟏, 𝒔 − 𝝁𝟐…. 𝒔 − 𝝁𝒏 = 𝟎, ok. This 

is I know all these numbers, right, I know all the 𝝁 ones, so I have a polynomial in 𝒔𝒏 with 

all the coefficients which are known to me. On the right-hand side, I would have unknowns 

in the terms of 𝑲𝟏 till 𝑲𝒏.  

So, I just equate the characteristic equation on this one which is in powers of 𝒔𝒏 plus, ok. 

We will see how to write this. And on the right-hand side, I should just equate this to the 

characteristic equation which I get by |𝒔𝑰 − 𝑨 + 𝑩𝒌|, ok. Let’s write this down little more 

formally now, ok.  
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So, this is really what. So, I have the desired poles which are 𝝁𝟏 till 𝝁𝒏 and I will have the 

characteristic equation as a polynomial in 𝒔𝒏. On the right-hand side, I know 𝒔, I know 𝑨, 

I know 𝑩, I just need to find out 𝑲. So, I will have again a polynomial here of power 𝒏 I 

just equate these two, as I did earlier, ok. So, well this is just straightforward, right, this is 

exactly what we did here. 
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So, I will just quickly look at this. So, pole placement, so this exact this procedure which 

we derived or which we or where we design the controller, a state feedback controller    



𝒖 = −𝑲𝒙 to achieve certain performance specifications is called the pole placement 

technique, ok.  

So, this is required to have the system desired behavior a necessary and sufficient condition 

is that the system should be completely controllable, ok. So, what do I do? Well, I know 

this 𝝁𝟏 till 𝝁𝒏, and I just equate these two I compare the coefficients and I and I arrive at 

the desired control law.  

There is also other method from the controllable canonical form, ok. Let’s first write down 

and then and then see what it means, ok. 

(Refer Slide Time: 36:15) 

 

So, let’s say I have the system in the controller canonical form, ok. I am just being a little 

lazy to write. So, let’s for the purpose of derivation let just say that 𝒙 is in 𝑹𝟑, ok. So, if in 

𝑹𝟑 my 𝑨 matrix would look like this, it will be [
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

−𝒂𝟑 −𝒂𝟐 −𝒂𝟏

]. The 𝑩 matrix will have 

entries [
𝟎
𝟎
𝟏

], ok, ok. 

So, let’s first say that the desired closed-loop poles are at 𝝁𝟏, 𝝁𝟐, and 𝝁𝟑, ok. So, my 

characteristic equation the desired one would be like this. So, let just write this down as 

say 𝒔𝟑, and let’s denote the coefficient in terms of some 𝜶, say this is like                             



𝒔𝟑 + 𝜶𝟏𝒔𝟐 + 𝜶𝟐𝒔 + 𝜶𝟑 = 𝟎. So, this is the desired in such a way that 𝝁𝟏, 𝝁𝟐, 𝝁𝟑, and in 

turn 𝜶𝟏, 𝜶𝟐, 𝜶𝟑 are known.  

So, this is this system is completely controllable, ok. So, just because it is just in the 

controllable canonical form. Now, I say I want to appropriately place the poles of the 

closed-loop system at 𝝁𝟏, 𝝁𝟐, and 𝝁𝟑. So, what is the control law                                               

𝑩 = − [

𝒙𝟏

𝒙𝟐

𝒙𝟑

] [𝑲𝟏 𝑲𝟐 𝑲𝟑] that will achieve this configuration in the closed-loop. So, the 

unknowns here are 𝑲𝟏, 𝑲𝟐, and 𝑲𝟑, ok. 

So, what is a characteristic equation? Right. The characteristic equation is |𝒔𝑰 − 𝑨 + 𝑩𝒌|. 

So, this would simply be 𝒔𝑰 minus, ok. What is 𝑨?                                         

[
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

−𝒂𝟑 −𝒂𝟐 −𝒂𝟏

] + [
𝟎
𝟎
𝟏

] [𝑲𝟏 𝑲𝟐 𝑲𝟑]; and this minus will show up here, ok. 

So, if I just write this down I will get the following 𝒔𝑰, ok, I will just write it completely 

in the matrix form. So, this matrix would be like this. We will have a 𝒔 here. So, this is the 

entire, 𝑨, ok. So, this should actually be plus because I am looking at |𝒔𝑰 − 𝑨 + 𝑩𝒌|. So, 

this minus and minus will cancel out, ok. 

So, I have [
𝒔 −𝟏 𝟎
𝟎 𝒔 −𝟏

𝒂𝟑 + 𝑲𝟏 𝒂𝟐 + 𝑲𝟐 𝒔 + 𝒂𝟏 + 𝑲𝟑

] = 𝟎. Or in other words, this means that the 

characteristic equation now is 𝒔𝟑 + (𝒂𝟏 + 𝑲𝟑)𝒔𝟐 + (𝒂𝟐 + 𝑲𝟐)𝒔 + (𝒂𝟑 + 𝑲𝟏) = 𝟎.  

Now, I want to compare this with this. Which essentially means that 𝒂𝟏 + 𝑲𝟑 = 𝜶𝟏 or in 

other words, the unknown 𝑲𝟑 can be determined as 𝜶𝟏 − 𝒂𝟏. This the 𝒂𝟏 is known to us. 

𝜶𝟏 is also known to us. 𝒂𝟏 is from the given system matrix. 𝜶𝟏 comes as a result of the 

desired closed-loop poles. Similarly, then I can write 𝑲𝟐 = 𝜶𝟐 − 𝒂𝟐, 𝑲𝟏 = 𝜶𝟑 − 𝒂𝟑, ok. 
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So, we will just write this down little formally now, ok. So, I have the characteristic 

polynomial of this form and if the system is not already in the controllable canonical form 

I will use the transformation, right the same thing 𝑷−𝟏𝑨𝑷 or in this case I call it 𝑻, it will 

be 𝑻−𝟏𝑨𝑻, where I compute the transformation 𝑻 in the following way. 𝑻 = 𝑴𝑾, where 

𝑴 and 𝑾 are completely. 𝑴 is just the controllable the controllability matrix, 𝑾 comes 

from the entries of the 𝑨 matrix in the following way.  

I will not tell you how to do this, but these are very standard texts. So, once you have them 

in the controllable canonical form then 𝑲’s are simply computed this way, right 𝜶’s and 

you can just compute. So, 𝜶’s are known to us, 𝒂’s are unknown to us, so I can directly 

compute what is the 𝑲 matrix. So, what we have seen in this edition is the definition of 

controllability, to check if the system is completely controllable or not and if the system is 

completely controllable how do I exactly do the control law.  

So, the only control technique which we have learnt here is what is called as the pole 

placement. There are other formulas is typically called the Ackermann’s formula. I will 

skip to those details, but what is important here is to know the concept. And once you 

know the concept things the even the Ackermann’s formula is kind of quite easy to derive.  

And you could also do the design directly by MATLAB. But before you do ask MATLAB 

to compute the gain matrix, the 𝑲 matrix for you, it’s very advantageous for you to know 

what is the; what is the procedure to compute the gain 𝑲, right, ok. 



So, in the next lecture we will see about what to do if the system is not controllable, is 

there any hope, and also to learn the concept of observability because so far we have been 

using things which says that the controller is of the form 𝒖 = −𝑲𝒙. Who tells us what the 

𝒙 is? Is it really trivial? If 𝒙 is not known to us completely say there are 𝒏 states I can only 

measure two states out of those 𝒏, is there any hope? So, these are the two things which 

we will quickly run through in the next lecture. 

Thank you. 


