
  

Control Engineering 

Dr. Ramkrishna Pasumarthy 

Department of Electrical Engineering 

Indian Institute of Technology, Madras 

 

Module - 12 

Tutorial - 2 

Lecture - 53 

State Space Solution and Matrix Exponential 

 

Hi everyone, today we’ll be looking at how to solve for the states in State Space System. 

And in the process we’ll also introduce what is called Matrix Exponential and we’ll see 

how to solve for the Matrix Exponential. 

(Refer Slide Time: 00:37) 

 

So, let’s start with a simple scalar system �̇� = 𝒂𝒙. Now, if we want to get a closed form 

expression for 𝒙(𝒕) then what we do is just integrate this. So, we have a                  

∫
𝒅𝒙

𝒙

𝒙(𝒕)

𝒙(𝟎)
= 𝒂 ∫ 𝒅𝒕

𝒕

𝟎
. So, you solve this and you get 𝒙(𝒕) = 𝒙(𝟎)𝒆𝒂𝒕. 

So, this is simple because it’s a scalar homogeneous system without any inputs. So, given 

a general LTI system �̇� = 𝑨𝒙 + 𝑩𝒖 we want to arrive at a closed form expression for 𝒙(𝒕) 

as some function of the initial states 𝒙(𝟎) and the input 𝒖(𝒕) and of course, this system 

matrices. 



  

Now, how do we go about doing this is to take the Laplace transform of the state space 

representation. So, we get 𝒔𝑿(𝒔) − 𝒙(𝟎) = 𝑨𝑿(𝒔) + 𝑩𝑼(𝒔). And we all know we can solve 

for 𝑿(𝒔) as (𝒔𝑰 − 𝑨)−𝟏𝒙(𝟎) + (𝒔𝑰 − 𝑨)−𝟏𝑩𝑼(𝒔). 

Now, to take this back to the time domain we take the inverse Laplace transform. In order 

to do that we need to know what the inverse Laplace transform of this function here is. So, 

we use this expression that. Now, you can check for yourselves that this is true because if 

you pre multiply by (𝒔𝑰 − 𝑨) then you get identity. So, using this                                     

𝑳−𝟏((𝒔𝑰 − 𝑨)−𝟏) = 𝑰 + 𝑨𝒕 + 
𝑨𝟐𝒕𝟐

𝟐!
+.... 

Now, this is similar to the scalar exponential expansion which is 𝒆𝒂𝒕 = 𝟏 + 𝒂𝒕 + 
𝒂𝟐𝒕𝟐

𝟐!
+..... 

So, this is what we call the matrix exponential 𝒆𝑨𝒕. Note that 𝑨 is a matrix. So, using that 

and from here we say that 𝒙(𝒕) = 𝒆𝑨𝒕𝒙(𝟎) + ∫ 𝒆𝑨(𝒕−𝝉)𝒕

𝟎
𝑩𝑼(𝝉)𝒅𝝉. 

Now, this 𝒙 this the second part of this expression we get by using the property that 

multiplication in the s domain corresponds to convolution in the time domain. So, this is 

the closed form expression for your state 𝒙(𝒕) as a function of your input, system matrices 

and the initial conditions. So, the question now is how do you compute this exponential, 

matrix exponential 𝒆𝑨𝒕; because it’s an infinite sum of matrices. 

Now, the first method is quite obvious from the way we saw here that 𝒆𝑨𝒕 is just the 

𝑳−𝟏((𝒔𝑰 − 𝑨)−𝟏). So, given a matrix 𝑨 you can just compute (𝒔𝑰 − 𝑨)−𝟏 and take the inverse 

Laplace transforms of the elements of the matrix and you get the matrix exponential that 

is one method. 

The second method is by using a diagonalization. So, here we assume that the matrix 𝑨 

has a distinct Eigen values in which case it can be written as 𝑨 = 𝑷𝑫𝑷−𝟏; where your 𝑫 is 

a diagonal matrix with entries (𝝀𝟏, 𝝀𝟐, … . , 𝝀𝒏), where these are the Eigen values of the 𝑨 

matrix. So, once you why we do this diagonalization is because we can see that if we 

express 𝒆𝑨𝒕 in terms of as something times 𝒆𝑫𝒕 then your 𝒆𝑫𝒕 is easy to compute because 

it’s a diagonal matrix. 
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So, we see how we do that. You know that 𝒆𝑨𝒕 = 𝑰 + 𝑨𝒕 + 
𝑨𝟐𝒕𝟐

𝟐!
+.... and now we know 

𝑨 = 𝑷𝑫𝑷−𝟏. So, by the way 𝑷 is any invertible matrix that accomplishes this 

diagonalization of the matrix 𝑨. You can choose 𝑷 to be the matrix of eigenvectors for a 

distinct eigen values yeah. So, 𝑨 = 𝑷𝑫𝑷−𝟏, 𝑨𝟐 = 𝑨. 𝑨 = (𝑷𝑫𝑷−𝟏)(𝑷𝑫𝑷−𝟏) = 𝑷𝑫𝟐𝑷−𝟏. 

Similarly, 𝑨𝟑 = 𝑨𝟐. 𝑨 = (𝑷𝑫𝟐𝑷−𝟏)(𝑷𝑫𝑷−𝟏) = 𝑷𝑫𝟑𝑷−𝟏. So, in general we can say that 

𝑨𝒌 = 𝑷𝑫𝒌𝑷−𝟏. So, going back to the original matrix exponential 𝒆𝑨𝒕 is 𝑰 and we express 

the identity matrix as 𝑷. 𝑷−𝟏 plus 𝑨𝒕 and 𝑨 = 𝑷𝑫𝑷−𝟏 into 𝒕 plus 𝑨𝟐 which is 
(𝑷𝑫𝟐𝑷−𝟏) 𝒕𝟐

𝟐!
 

and so on (i.e., 𝒆𝑨𝒕 = 𝑷𝑷−𝟏 + (𝑷𝑫𝑷−𝟏)𝒕 +
(𝑷𝑫𝟐𝑷−𝟏

) 𝒕𝟐

𝟐!
+…). 

So, we just do some jugglery here. So, take 𝑷 and 𝑷−𝟏 on either side outside. So, you have  

𝒆𝑨𝒕 = 𝑷 (𝑰 + 𝑫𝒕 +
 𝑫𝟐𝒕𝟐

𝟐!
+ ⋯ ) 𝑷−𝟏. So, we basically have that  𝒆𝑨𝒕 = 𝑷 𝒆𝑫𝒕𝑷−𝟏. So, 

since these are diagonal matrix we can use this way to compute the matrix exponential 𝒆𝑨𝒕. 

We’ll now look at the third method. 
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So, the third method for computing the matrix exponential is using the minimal 

polynomial. Now, given a matrix 𝑨 from Cayley Hamilton theorem we know that the 

matrix satisfies it’s characteristic equation. So, let’s say 𝒇(𝝀) = |𝝀𝑰 − 𝑨| = 𝟎 is the 

characteristic equation of the matrix 𝑨. So, we know that 𝒇(𝑨) = 𝟎. Now, for an 𝑛 𝑋 𝑛 

matrix 𝑨 this polynomial is of order 𝑛, but there could be a polynomial of lower order for 

which the matrix satisfies. 

So, let’s say there is another polynomial 𝝋(𝝀) = 𝝀𝒎 + 𝒂𝟏𝝀𝒎−𝟏 + ⋯ + 𝒂𝒎−𝟏𝝀 + 𝒂𝒎. So, 

this 𝒎 ≤ 𝒏 and this polynomial is such that 𝝋(𝑨) = 𝟎. So, it’s called a minimal 

polynomial; if the for the smallest 𝒎 for which the matrix satisfies this equation 𝝋(𝑨) = 𝟎 
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Now, for all computational purposes we can just use this 𝝋(𝝀)  equals |𝝀𝑰 − 𝑨| which is 

nothing but the characteristic equation divided by some 𝒅(𝝀) (i.e., 𝝋(𝝀) = 
|𝝀𝑰−𝑨|

𝒅(𝝀)
 ). Now, 

this 𝒅(𝝀) is the greatest common divisor of 𝒂𝒅𝒋(𝝀𝑰 − 𝑨). 

Now, why do we use this to find exponential of 𝑨𝒕 is we use this formula called the 

Sylvester interpolation formula which is which basically says that, 𝝋(𝝀) which is the 

minimal polynomial of a matrix 𝑨 assume that it is in this form. And let’s say its roots are 

(𝝀1, 𝝀2, … 𝝀𝑚). So, in that case your matrix exponential can be expressed using this 

formula. So, basically this whole thing is a matrix. You find the determinant equate it to 0 

and one of the entries is 𝒆𝑨𝒕. So, we get 𝒆𝑨𝒕 in terms of all the lower powers of 𝑨 until 

(𝒎 − 𝟏). 

So, we’ll see how these 3 methods work with an example. So, we’ll start with the first 

method which is just using inverse Laplace transforms. So, 𝒔𝑰 − 𝑨 and minus 𝑨 to find the 

inverse, (𝒔𝑰 − 𝑨)−𝟏 you first calculate the determinant which turns out to be just the 

product of diagonal terms |𝒔𝑰 − 𝑨| = (𝒔 − 𝟐)𝟐(𝒔 − 𝟏 ). So, and then your                            

(𝒔𝑰 − 𝑨)−𝟏 =
𝒂𝒅𝒋(𝒔𝑰−𝑨)

|𝒔𝑰−𝑨|
 ok. 
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So, 𝒂𝒅𝒋(𝒔𝑰 − 𝑨) and then you get (𝒔𝑰 − 𝑨)−𝟏 = 𝒂𝒅𝒋(𝒔𝑰−𝑨)

|𝒔𝑰−𝑨|
 which is. And 𝒆𝑨𝒕 is the inverse 

Laplace transform of this. So, 𝑳−𝟏 (
𝟏

𝒔−𝟐
) = 𝒆𝟐𝒕. Similarly, you take an inverse Laplace 

transform of every element in the matrix. We know how to compute the inverse Laplace 

transform of this by expanding it in terms of partial fractions. So, that will just be     

𝟑(𝒆𝟐𝒕 − 𝒆𝒕). So, that’s the matrix exponential computed using inverse Laplace transforms. 

We will solve it using the minimal polynomial way as well. So, to do that like I had 

mentioned you find the minimal polynomial first which is 
|𝝀𝑰−𝑨|

𝒅(𝝀)
. Now, so we know that 

𝒂𝒅𝒋(𝒔𝑰 − 𝑨) is this. And clearly (𝒔 − 𝟐) is a common factor of this adjoint matrix. So, your 

𝒅(𝝀) = 𝒔 − 𝟐 and we know |𝝀𝑰 − 𝑨| = (𝒔 − 𝟐)𝟐(𝒔 − 𝟏 ). 

So, we have 𝝋(𝝀) = (𝝀 − 𝟏)(𝝀 − 𝟐). So, we know our 𝝀’s here 𝝀𝟏 = 𝟏, 𝝀𝟐 = 𝟐 and we use 

this formula to calculate 𝒆𝑨𝒕. So, you can just substitute here. So, here you are 𝒎 = 𝟐 

because 𝝋(𝝀) is of order 𝟐. So, you have 1 1. 

So, you can solve this determinant equation the way you usually solve for determinants 

and get 𝒆𝑨𝒕 in terms of 𝑨 and these exponentials. You can cross check that you get the 

same answer as this. Now, going to method 2 which is diagonalization ok. 
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So, method 2 including diagonalization the matrix. So, firstly we find out the eigen values 

of the matrix 𝑨. We have |𝒔𝑰 − 𝑨| here. The eigen values are 1, 2 and 2. There is a repeated 

eigen value which is 2. Now, the matrix 𝑷 which is used for diagonalization is a matrix of 

eigen vectors 𝒗𝟏, 𝒗𝟐, 𝒗𝟑. So, we solve for these Eigen vectors for each Eigen value say for 

𝝀 = 𝟐: 𝑨𝒗 = 𝟐𝒗 this is just 𝝀. 𝑨𝒗 = 𝝀𝒗 will give you. So, when you solve this you get 

2𝒗𝟏 = 2𝒗𝟏. 

So, here we see that our Eigen vector 𝒗 is of this form [

𝒗𝟏

𝒗𝟐

3𝒗𝟐

]. So, there are no constraints 

on the quantity on the first and the second coordinates. So, you see that the null space for 

this eigen value which is 𝝀 = 𝟐 has dimension 2. So, basically what I am saying is that for 

eigen value 2 you will have 2 eigen vectors, because 2 quantities are not constrained. So, 

you can just put in any values for 𝒗𝟏 and 𝒗𝟐. I will just choose. So, these are the two 

eigenvectors corresponding to the repeated eigen value 2. 
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Now, we compute for 𝝀 = 𝟏. So, solving this equation you get that 𝒗𝟏 = 𝟎, 𝒗𝟐 = 𝟎 and 

𝒗𝟑  ∈ 𝑹. So, we choose our Eigen vector to be [
𝟎
𝟎
𝟏

]. So, your matrix 𝑷 finally, looks like 

[
𝟏 𝟏 𝟎
𝟏 𝟐 𝟎
𝟑 𝟔 𝟏

]. 

So, from here you can compute 𝑷−𝟏 as the regular adjoint by determinant. I will give you 

the numbers ok. So, once you have 𝑷 and 𝑷−𝟏 inverse you can your 𝑫 is a nothing but a 

diagonal matrix with these Eigen values. So, note that the eigen values need to be in the 

same order as your eigen vectors. So, these two eigenvectors correspond to 𝝀 = 𝟐  

So, 2 and 2 and this is for 𝝀 = 𝟏 and the remaining entries are all 0. So, once you have 

again here you can cross check that 𝑷𝑫𝑷−𝟏 will give you 𝑨 and from here your              

𝒆𝑫𝒕 = [
𝒆𝟐𝒕 𝟎 𝟎
𝟎 𝒆𝟐𝒕 𝟎
𝟎 𝟎 𝒆𝒕

]. So, that’s just the individual exponentials along the diagonal. 

So, once you have 𝒆𝑫𝒕 you compute 𝒆𝑨𝒕 = 𝑷𝒆𝑫𝒕𝑷−𝟏. And we had obtained our 𝒆𝑨𝒕 earlier 

on using the other two methods before. So, you can again check that it matches with the 

value that you get here. So, yeah so today we learnt about why we need matrix exponentials 

and how do you compute them using an example. 

Thank you. 


