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Hello everyone. In the previous lectures, we were looking at State Space Models, we were 

introduced to them.  
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So, we looked at the standard form of the state space model as 𝒙(𝒕)̇ = 𝑨𝒙(𝒕) + 𝑩𝒖(𝒕); 

and output 𝒚(𝒕) = 𝑪𝒙(𝒕) + 𝑫𝒖(𝒕). So, here 𝒙 is the state vector, and 𝒖 is the input vector, 

𝒚 is the output vector. And 𝑨 is the dynamics matrix; 𝑩 is the input matrix; 𝑪 is the output 

matrix; and 𝑫 is the feed forward matrix. So, these are the standard names for these 

matrices. 

And so there are two things that we can do. So, given a state space model, we can go back 

to the transfer function model; and given a transfer function we can go to the state space 

model. So, earlier we looked at how can we go from the state space model to the transfer 

function model using this formula. So, 
𝒀(𝒔)

𝑼(𝒔)
= 𝑪(𝒔𝑰 − 𝑨)−𝟏𝑩 + 𝑫.  



 

 

So, given a state space model with the matrices 𝑨, 𝑩, 𝑪 and 𝑫, this is how you can 

transform it into a transfer function. And this transformation is unique. So, any state space 

model given you can only determine one transfer function, so that is the case of going from 

state space to transfer function  

Now, what about the other way? So, when we go from transfer function to state space, the 

transformation is not unique. So, that means, when you are given one state space model 

you can find out multiple transfer function models. So, instead of finding some kind of 

random transfer, some random state space model, we will try to find out some standardized 

state space models which we call canonical forms.  

And so today we will discuss about three canonical forms. First one is controllable 

canonical form, the second one is the observable canonical form, and the third one is the 

diagonal canonical form. So, while we discuss about each of these forms, we will see why 

these names come.  

So, first one will be the controllable canonical form. So, to derive this, we’ll start with a 

strictly proper transfer function on this form, sorry. So, this is strictly proper transfer 

function, because the numerator has a degree of 𝒏 − 𝟏, and the denominator has a degree 

of 𝒏, that is the number of poles are greater than the number of zeros. So, what happens in 

this transfer function is 𝒕 = 𝟎 ok. 

So, when we are given this transfer function, how do you find out a controllable canonical 

form of the state space model? So, in case you have a transfer function which is not strictly 

proper something like you can have here say 𝒃𝟎𝑺𝒏. So, in that case, what you can do is 

you can simply perform polynomial division, and take this 𝒃𝟎 out. So, that it will come 

something like this, and rest again remains in the same form, we can again apply the same 

transformation that we are doing now.  

So, for now we will stick to a strictly proper transfer function and go ahead with it. So, 

given this strictly proper transfer function, how do we convert it into a controllable 

canonical form? So, what we’ll do is, we’ll deal with the numerator and the denominator 

separately. So, for that, I will take this as 
𝒀(𝒔)

𝑼(𝒔)
 is equals to I will introduce a new polynomial 

called 𝒁(𝒔). So, 
𝒀(𝒔)

𝑼(𝒔)
 can be written as 

𝒁(𝒔)

𝑼(𝒔)

𝒀(𝒔)

𝒁(𝒔)
.  



 

 

So, I am just multiplying and dividing by a new polynomial 𝒁(𝒔). And this will be taken 

as the denominator part, and this part will be the numerator. So, I will just write it down. 

So, 
𝒁(𝒔)

𝑼(𝒔)
=

𝟏

𝑺𝒏+𝒂𝟏𝑺𝒏−𝟏+....+ 𝒂𝒏
, so that will be 

𝒁(𝒔)

𝑼(𝒔)
. And then 

𝒀(𝒔)

𝒁(𝒔)
 will be just the 

numerator. So, these are not any transfer function. We are just introducing them and divide 

what you say dividing them into two parts just for the sake of calculation convenience.  
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So, now, first we will take the first part, and we will do some algebraic manipulations as 

follows. So, I can take 𝒁(𝒔) times I can do cross multiplication on this, and then I will get 

𝒁(𝒔)[𝑺𝒏 + 𝒂𝟏𝑺𝒏−𝟏+. . . . + 𝒂𝒏] = 𝑼(𝒔).  

So, now what I will do is, I will take inverse Laplace transform. So, when I do inverse 

Laplace transforms, 𝒁(𝒔) = 𝒛. And so and it will be ok, I will just first multiply it   

𝑺𝒏𝒁(𝒔) + 𝒂𝟏𝑺𝒏−𝟏𝒁(𝒔)+. . . . + 𝒂𝒏𝒁(𝒔) = 𝑼(𝒔).  

Now, when we apply Laplace inverse, 𝑺𝒏 = 𝒛(𝒏)(nth derivative of z). So, I can write it as 

𝒛(𝒏) in the brackets. So, this is a notation to denote that we are taking the derivative of 

𝒛(𝒏)times, and so we will just follow the same thing 𝒂𝟏𝒛(𝒏−𝟏) derivative of 𝒛 and so on up 

to 𝒂𝒏𝒛 is equals to 𝒖 (i.e., 𝒛(𝒏) + 𝒂𝟏𝒛(𝒏−𝟏) + ⋯ + 𝒂𝒏𝒛 = 𝒖). So, when we take the Laplace 

inverse, we are representing everything in small letters. So, 𝒁(𝒔) becomes small 𝒛, and 

𝑼(𝒔) becomes small 𝒖.  



 

 

Now, on this differential equation, we will be defining our state variables. So, here is how 

we define? So, I will define my 𝒙𝟏 I need to define 𝒏 state variables. So, 𝒙𝟏 I will take it 

as 𝒛, and 𝒙𝟐 I will take it as 𝒙𝟏̇ will which will be equal to 𝒛̇, so that’s the first derivative 

of 𝒛. And then 𝒙𝟑 will be 𝒙𝟐̇ which will be equal to 𝒛̈, and I will go on up till 𝒙𝒏 is equals 

to 𝒙𝒏−𝟏̇ , which will be equals to (𝑛 − 1)th derivative of 𝒛. And 𝒙𝒏, I will write here 𝒙𝒏̇ is 

equals to the 𝒛(𝒏).  

So, this 𝒛(𝒏), I will take it from here. I will take all these terms and send them to the other 

side, and write it here. So, that will be 𝒛(𝒏) = 𝒖 − 𝒂𝟏𝒛(𝒏−𝟏) … − 𝒂𝒏𝒛. Now, you can see 

that we have 𝒛(𝒏−𝟏), 𝒛(𝒏−𝟐), … 𝒛, and all these variables are already defined in terms of 

the state variables. So, we will just substitute them here, and my 𝒙𝒏̇  can be written as  

𝒖 − 𝒂𝟏𝒙𝒏 − 𝒂𝟐𝒙𝒏−𝟏 … − 𝒂𝒏𝒙𝟏.  

So, now you can see that we have represented all the state variables in terms of 𝒙 now. So, 

now, we have a set of equations. So, what are those equations? The first one is 𝒙𝟏̇ = 𝒙𝟐, 

𝒙𝟐̇ = 𝒙𝟑 so on 𝒙𝒏−𝟏̇ = 𝒙𝒏, and 𝒙𝒏̇ is this expression. So, using all these equations, we 

can write the state space model.  
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So, the state space model will be 𝒙̇ = [

𝒙𝟏̇

𝒙𝟐̇

⋮
𝒙𝒏̇

]. So, what is 𝒙𝟏̇? It is simply 𝒙𝟐. So, I can write 

it 0 1 ok, I will just have to get a matrix here times [

𝒙𝟏

𝒙𝟐

⋮
𝒙𝒏

].  

Now, you can see that this will be 0, this will be 1 and rest all again will be 0’s, because 

𝒙𝟏̇ = 𝒙𝟐. Now, 𝒙𝟐̇ = 𝒙𝟑. Now, you will get a 1 here and rest all will be 0’s. And similarly, 

finally, 𝒙𝒏̇ will be 𝑎𝑛 minus 𝑎𝑛𝑥1. So, here it will be  −𝒂𝒏−𝒂𝒏−𝟏 … . − 𝒂𝟏, so none of 

these first (𝑛 − 1) state variables have input. So, this will be all 0’s except at the end times 

𝒖.  

Now, if you simply multiply these matrices and observe, you will get those set of equations 

exactly same ok. So, this is what we call the controllable canonical form. So, and this will 

be 𝑨; this will be 𝑩. And you can see output 𝒚, so to get the output 𝒚 we have to use the 

other set of equations.  

So, I can take this and say 𝒀(𝒔) = 𝒃𝟏𝒔𝒏−𝟏𝒁(𝒔) + ⋯ … + 𝒃𝒏𝒁(𝒔). So, here again I can take 

the Laplace inverse, and just use those equations. Then my 𝒀(𝒔) will simply be, when we 

take the Laplace inverse, it will be just 𝒚 or 𝒚(𝒕) = 𝒃𝟏𝒙𝒏 + 𝒃𝟐𝒙𝒏−𝟏 + ⋯ . . +𝒃𝒏𝒙𝟏. So, this 

will be the equation for 𝒚(𝒕). 

And in the matrix form I can just write it as 𝒃𝒏, sorry, this is 𝒏, 𝒃𝒏. So, in the matrix form, 

I can write it as 𝒚 = [𝒃𝒏𝒃𝒏−𝟏 … . . 𝒃𝟏]𝒙. So, 𝒙 is the state vector. So, this matrix will 

become my output matrix 𝑪. So, now you have 𝑨, 𝑩, 𝑪, and 𝑫 is equals to 0. So, when we 

use these matrices, the state space model that we get is the controllable canonical form.  
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So, why is it called the controllable canonical form? I will draw a small diagram, and you 

will be able to see. So, we will draw a block, small block diagram to represent this. So, I 

will start with state 𝒙𝟏 and so here I put an integrator block. So, this will be 𝒙𝟏̇, because 

when I integrate 𝒙𝟏̇, I will get 𝒙𝟏. And this 𝒙𝟏̇ is nothing but 𝒙𝟐.  

So, similarly I can put a series of integrator blocks and get up to 𝒙𝒏, and then I add another 

integrator block to get 𝒙𝒏̇. And to get the value of 𝒙𝒏̇, so as you can see 𝒙𝒏̇is summing up 

or over all the state variables with certain coefficients. So, we need to put a summer here 

and with the input, because it is 𝒖 plus all this. So, 𝒖 − 𝒂𝟏𝒙𝒏 − ⋯ − 𝒂𝒏𝒙𝟏.  

So, my 𝒙𝒏 is here I can just take a feedback from here and put −𝒂𝟏. And similarly it will 

be another feedback from 𝒙𝟐 which will have a coefficient −𝒂𝒏−𝟏. And similarly from 𝒙𝟏, 

we will have another feedback with the coefficient −𝒂𝒏.  

So, just forgetting the output for a while we can see that the input 𝒖 is passing through all 

the state variables 𝒙𝒏, 𝒙𝒏−𝟏, 𝒙𝒏−𝟐, ……, 𝒙𝟐, 𝒙𝟏. So, output 𝒚 will actually come out here 

somewhere. So, it can be observed that input has a control over all the states in the system 

which is clearly observed to this block diagram, and that can be clearly seen in this matrix. 

So, this is the reason why we call the controllable canonical form, because the input has 

control over all possible, all existing states and that can be clearly seen. 



 

 

So, if you want the output, you can further extend the block diagram by adding 𝒃𝒏 here 

and so output 𝒚 sums over 𝒃𝒏𝒙𝟏 and so it will be 𝒃𝒏−𝟏𝒙𝟐 and so on up to 𝒃𝟏𝒙𝒏, so that is 

the complete block diagram of the state space model. And you can clearly see why it is a 

controllable canonical form.  
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So, now we look at the observable canonical form ok. Now, coming to the observable 

canonical form. This actually becomes very simple once you know the controllable 

canonical form. So, once say 𝑨, 𝑩, 𝑪, and 𝑫 are the matrices pertaining to the controllable 

canonical form. So, the matrices pertaining to the observable canonical form can be written 

as follows. I will call them as 𝑨̅, 𝑩̅, 𝑪̅, and 𝑫̅.  

So, 𝑨̅ is nothing but 𝑨𝑻; 𝑩̅ is nothing but 𝑪𝑻; 𝑪̅ is nothing but 𝑩𝑻; and 𝑫̅ is nothing but 

𝑫𝑻. So, this will be the observable canonical form you. So, you can just find out the 

controllable canonical form, and take the transforms of those matrices, and arrange them 

in this manner to get the observable canonical form ok.  
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So, now we look at the diagonal canonical form. So, again we will start with the strictly 

perfect transfer function. So, what we will do is, we will take this denominator and 

factorize them, factorize the 𝒏 roots by writing it in this form. So, 𝑷𝟏, 𝑷𝟐, 𝑷𝟑, … . , 𝑷𝒏 are 

the roots of the denominator polynomial. And so we can write it where we can write the 

denominator in this form (𝒔 + 𝑷𝟏)(𝒔 + 𝑷𝟐) … . . (𝒔 + 𝑷𝒏).  

Now, what we’ll do is, we’ll apply partial fractions. And I can write it in this form      

𝑪𝟏

𝒔+𝑷𝟏
+

𝑪𝟐

𝒔+𝑷𝟐
+ ⋯ … +

𝑪𝒏

𝒔+𝑷𝒏
. Now, what we will do is we will send 𝑼(𝒔) to the other side, 

and say 
𝑼(𝒔)𝑪𝟏

𝒔+𝑷𝟏
+

𝑼(𝒔)𝑪𝟐

𝒔+𝑷𝟐
+ ⋯ … +

𝑼(𝒔)𝑪𝒏

𝒔+𝑷𝒏
 ok. So, now I’ll define each of these parts, 

leaving the 𝑪’s, I’ll define that as 𝑿𝟏(𝒔).  
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So, 𝑿𝟏(𝒔) =
𝑼(𝒔)

𝒔+𝑷𝟏
. So, I will cross multiply and now I take the inverse Laplace. So, when 

we take the inverse Laplace of 𝒔𝑿𝟏(𝒔), it will be just 𝒙𝟏. So, earlier also and here also, 

when we do the inverse Laplace, we assume that all the initial conditions are 0. So, you 

should remember that when we apply this inverse Laplace we are assuming that all the 

initial conditions are 0. So, 𝒔𝑿𝟏(𝒔) when take in the inverse it becomes just                         

𝒙𝟏̇ + 𝑷𝟏𝒙𝟏 = 𝒖. So, these are all again time based variables. So, I can just write                 

𝒙𝟏̇ = 𝒖 − 𝑷𝟏𝒙𝟏.  

So, similarly I will take each of these as 𝑿𝟐(𝒔), 𝑿𝟑(𝒔),…. 𝑿𝒏(𝒔). And just repeat the same 

process, and I will get 𝒙𝟐̇ = 𝒖 − 𝑷𝟐𝒙𝟐....... 𝒙𝒏̇ = 𝒖 − 𝑷𝒏𝒙𝒏. So, now, I have all the state 

variables and their derivatives Now, I can write the canonical form I will just write the 

matrices directly. So, 𝑨 will be 𝑷𝟏, 𝑷𝟐, … . , 𝑷𝒏 along the diagonal and all the terms will be 

0’s. So, this is the diagonal matrix, so that is the reason why we have the name diagonal 

canonical form. 

And then 𝑩 will be all 1’s, because in every 𝒙𝟏̇, 𝒙𝟐̇, ….., 𝒙𝒏̇ we have a 𝒖. So, it will be all 

just 1’s times ok, 𝒖 won’t come here, it’s just 𝑩. And 𝑪 will be, so you can see why this 

𝑿𝟏(𝒔)𝑪𝟏 + 𝑿𝟐(𝒔)𝑪𝟐 … . +𝑿𝒏(𝒔)𝑪𝒏. So, C n, 𝑪 will be just 𝑪 = [𝑪𝟏, 𝑪𝟐, … 𝑪𝒏], and 𝑫 will 

be anyway 0. So, these are the matrices pertaining to the diagonal canonical form. So, now 

we’ll try to look at an example. So, we will just solve one example and try to derive all the 

three forms.  
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So, the transfer function is 𝑮(𝒔) = 
𝟏

𝒔𝟑+𝟔𝒔𝟐+𝟏𝟏𝒔+𝟔
 ok. So, this is the transfer function that 

we take. And so when we are deriving the canonical forms, there are two ways of going at 

it. One way is actually deriving all the state variables, and other way is remembering what 

we got the matrices 𝑨, 𝑩, 𝑪, 𝑫, and just trying to substitute the coefficients of these 

polynomials into them. So, you can do it either way.  

But if you try to remember the formula, it might become bit complicated, because you 

need to know which coefficient pertains to which of those. Because even in the textbooks 

some people use it in a different way, some people use it from 𝒃𝟎 to 𝒃𝒏, and some people 

do it from 𝒃𝒏 to 𝒃𝟎; and also in the denominator people also use it in the reverse.  

So, when you remember the formulas, it might become a bit difficult. So, what I will do is 

I will try to derive the state variables using the way that we did earlier. So, I will just take 

𝒀(𝒔). So, this I will take it as 
𝒀(𝒔)

𝑼(𝒔)
. And so I can write 𝒀(𝒔)(𝒔𝟑 + 𝟔𝒔𝟐 + 𝟏𝟏𝒔 + 𝟔) = 𝑼(𝒔). 

So, I just did cross multiplication.  

Now, I will apply Laplace inverse assuming 0 initial condition. So, it will be                        

𝒚⃛ + 𝟔𝒚̈ + 𝟏𝟏𝒚̇ + 𝟔𝒚 = 𝒖. So, now, I got the differential equation. Now, I can define my 

state variables. I will define 𝒙𝟏 = 𝒚; 𝒙𝟏̇ = 𝒙𝟐 = 𝒚̇; 𝒙𝟐̇ = 𝒙𝟑 = 𝒚̈; and 𝒙𝟑̇ = 𝒚⃛. So, we just 

have three state variables 𝒙𝟏, 𝒙𝟐 and 𝒙𝟑. 



 

 

Now, we can substitute them here? So, actually we already know 𝒙𝟏̇ and 𝒙𝟐̇. And 𝒙𝟑̇ = 𝒚⃛ 

which I will find out from this equation; get it as 𝒖 − 𝟔𝒚̈ − 𝟏𝟏𝒚̇ − 𝟔𝒚. And again 𝒚̈, 𝒚̇, and 

𝒚, I can substitute it from these. So, I will get 𝒖 − 𝟔𝒙𝟑 − 𝟏𝟏𝒙𝟐 − 𝟔𝒙𝟏. So, now I have the 

values of 𝒙𝟏̇, 𝒙𝟐̇, and 𝒙𝟑̇. 
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Now, you can simply write the model as 𝒙 = [
𝟎 𝟏 𝟎
𝟎 𝟎 𝟏

−𝟔 −𝟏𝟏 −𝟔
] 𝒙 + [

𝟎
𝟎
𝟏

] 𝒖. And 𝒚 is just 𝒙𝟏 

in this case, so it will be just 𝒚 = [𝟏 𝟎 𝟎]𝒙. So, this is the controllable canonical form. 

As you can see it is very easy if you can derive it out directly instead of remembering the 

formulas. So, now we have the controllable canonical form. So, I will say I will call this 

ok, this is the controllable form.  

So, what about the observable form? Observable form will be simply 𝒙 is equals to so as 

𝑨 = 𝑨𝑻, I just had to take the transpose of this, so it will be 𝒙 = [
𝟎 𝟎 −𝟔
𝟏 𝟎 −𝟏𝟏
𝟎 𝟏 −𝟔

] 𝒙 + [
𝟏
𝟎
𝟎

] 𝒖 

plus 𝑩 = 𝑪𝑻 = [
𝟏
𝟎
𝟎

] 𝒖. And 𝑪 = 𝑩𝑻, so it will be 𝑦 = [𝟎 𝟎 𝟏]𝒙. So, this is the observable 

form.  
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So, finally, the diagonal form. So, to get the diagonal form, we need to find the roots of 

the denominator polynomial. So, I am just I already found them to be −𝟏, −𝟐, −𝟑, you can 

verify. So, I can write my 
𝒀(𝒔)

𝑼(𝒔)
=

𝟏

(𝒔+𝟏)(𝒔+𝟐)(𝒔+𝟑)
. And this I will when I apply partial 

fractions, I will get 
𝟏

𝟐⁄

𝒔+𝟏
+

(−𝟏)

𝒔+𝟐
+

𝟏
𝟐⁄

𝒔+𝟑
. So, this also you can verify yourselves. 

And so, now, we have this partial fractions my 𝑨 is nothing but these three coefficients 

sorry these three roots coming in the across the denominator, so it will be                               

𝑨 = [
−𝟏 𝟎 𝟎
𝟎 −𝟐 𝟎
𝟎 𝟎 −𝟑

]. And then 𝑩 is all just 1’s (i.e., 𝐵 = [
1
1
1

]). And 𝑪 is the numerators of 

the partial fraction, so it is 𝑪 = [𝟏
𝟐⁄ −𝟏 𝟏

𝟐⁄ ]. So, that is this is the diagonal canonical 

form.  

So, we just took one example and we try to derive all the three canonical forms. So, there 

might be some special cases where you might not be able to derive the diagonal form, 

because there can be repeated roots and not unique roots as in this case. So, that is when 

you go to something called a Jordan canonical form which we are not doing as of now.  

So, these are the canonical forms which we discuss. So, I will try to put up some more 

problems which you can try out as an exercise (ii) 
𝒔+𝟑

𝒔𝟐+𝟑𝒔+𝟐
, and (iii) 

𝒔𝟐+𝟑𝒔+𝟑

𝒔𝟐+𝟐𝒔+𝟏
. So, you can 

just try out these two examples and you can see that this last example actually has a non-



 

 

zero 𝑫. So, you need to perform polynomial division first, and then apply whatever we did 

until now. So, you can just try out those, and maybe we will try to give them as assignment 

problems.  

Thank you. 


