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This is a short lecture on potentials.  So from the physical idea of potential energy, we outline 

another way to actually visualise the dynamics of x dot =f(x).  So you imagine a particle sliding 

down the walls of a potential well, where the potential V(x) is defined by f(x)= -dv dx. A 

potential well is the region that is surrounding a local minimum of potential energy. So let us 

make a simple minded plot of V(x) versus x that is your potential well.   

 

We highlight the particle and the direction which it is moving. So imagine the particle actually 

moving through the walls of the potential, the negative sign in the definition of V actually comes 

from physics, essentially what this shows is that the particle always moves downwards.   
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Let us go ahead and develop some intuition for ourselves, let x be a function of t and let us 

calculate the time derivative of V is the function of x(t).  So, invoking the good old chain rule 

from calculus yields dv dt = dv dx times dx dt. So now x dot =f(x) = - dv dx and that is simply by 

the definition of the potential. Thus, dv dt = - dv dx whole square which will less than or equal to 

zero.  

 

So V of t decreases along the trajectories, that worth highlighting and thus the particle moves 

towards a lower potential.   Now if the particle is at an equilibrium when dv dx = 0 and so V is 

simply a constant. Now note that the local minima of V(x) gives us stable fixed points and the 

local maxima of V(x) gives us unstable fixed points.  
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Let us consider an example, graph the potential for x dot = -x and identify all the equilibrium 

points.  So, we need to find V(x) such that - dv dx = - x this gives us V(x) =1/2 x square + C1 

where C1 is just an arbitrary constant. So for now let C1 be 0, now let us plot V(x) versus x, this 

plot of V(x) versus x is rather simple minded curve, which we can easily do by hand and were 

we go that is what the curve look like.  

 

The only equilibrium point occurs at x = 0 and it is stable. The analytic solution for x dot = -x is 

just x = C1 e to the -t, where C1 is a constant. 
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Let us consider another example, graph the potential for the system x dot = x - x cubed and 

identify all equilibrium points. So, we set - dv dx = x - x cube and solving this we get V – 1/2 x 

square + 1/4 x to the 4 + C1. Let C1=0. Now let us make the plot of V(x) versus x, so the plot of 

V(x) versus x is little bit more involved highlight the local minima +1 and -1.  

 

So, the local minima is at x = plus minus 1 which implies stable equilibrium and the local 

maxima is at x = 0, which implies unstable equilibrium. The system is bistable as it has 2 stable 

equilibrium.  So here is an exercise, can you find an analytical solution to x dot = x - x cubed.  

Let us consider another exercise, let x dot =f(x) be a vector field on the line and use the existence 

of a potential function V(x) to show that the solutions actually cannot oscillate.  

 

So, this second exercise is actually closely related to the lecture where we talked about the 

impossibility of oscillations of x dot =f(x). But here what I am saying is that can you use the 

existence of a potential function V(x) to actually show that solutions of x dot =f(x) cannot 

oscillate.  
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Now, this was a very short lecture, the intent of the lecture was to introduce you to the notion of 

potentials and to highlight their ability to analyse equations of the form x dot =f(x). Now you 

look at the definition of a potential. So let us assume that we have potential function V(x) which 



is defined as f(x) = - dv dx, then evaluating that, relationship allowed us to say something about 

the original nonlinear system x dot =f(x).  

 

We offered one of two examples, but we left you with an interesting exercise that I suggest that 

you actually try which was roughly as follows, now can we actually use the notion of a potential 

as applied to an equation of the form x dot =f(x) and prove using this notion that the solutions of 

x dot =f(x) will actually not oscillate. They will actually not oscillate, this is something that we 

are talked about earlier in the lectures in terms of impossibilities of oscillations, but now can you 

use this notion of potential to make exactly the same point again. 


