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We focus is on ruling out closed orbits. So, let us assume that based on some numerical evidence 

or our own intuition, we think that a particular system has no periodic solutions.  So how can we 

establish that the system indeed has no periodic solutions? We will briefly outline three methods 

for ruling out closed orbits.  Number one Gradient systems number two is Lyapunov functions 

and number three is Dulac’s criteria.  
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So, let us look at Gradient systems, suppose the system can be written in the form x dot = -del v, 

for some continuously differentiable single valued scalar function v of x.  Such a system is called 

a Gradient system with potential function v. Note suppose that x dot = f(x)y, y dot = gs of xy 

then x dot = -del v implies f(x)y -dv dx and gs of xy is -dv dy.  So, there is a theorem which 

states that closed orbits are impossible in gradient systems. 

 

We observe that, in fact most two dimensional systems actually do not turn out to be gradient 

systems.  Recall that all vector fields on the line are gradient systems.  Let us consider an 

example, show that there are no closed orbits for the system x dot = sine y and y dot = x cos y. 

The system is a gradient system with potential function v of xy = -x sine y and we can readily 

verify that x dot = -dv dx and y dot = -dv dy and so by the above theorem there are no closed 

orbits.  
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Have we discussed about Lyapunov function, consider a system x dot = f(x) with a fixed point at 

x*.  Suppose that we can find a Lyapunov function that is a continuously differentiable real 

valued function v(x)with the following properties, 1. The effects is greater than zero for all x0 = 

x* and v(x*) =0, so v is positive definite. 2. v dot is less than zero for all x0 = x*, so all 

trajectories flow towards x*.  

 

Then x* is globally asymptotically stable, in sense that for all initial condition x of t tends to x* 

as t tends to infinity. In particular, the system has no closed orbits, there are conclusion is as 

follows; all trajectories move monotonically down the graph of v(x)towards x*.  So, let us 

visualise this through a figure, so that is the equilibrium point x*, that is the graph of v(x)and the 

trajectories move monotonically towards the equilibrium x*, the solutions actually do not get 

stuck anywhere.  

 

If they did get stuck then v would actually stop changing, but by assumption v dot is less than 

zero, everywhere except at x*.  
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So how can we actually construct a Lyapunov function, unfortunately there is no systematic way 

to construct a Lyapunov function.  So, let us consider an example, by constructing a Lyapunov 

function, show that the system x dot = -x + 4y and y dot = -x -y to the cube has no closed orbits. 

Consider the function v of xy = x square + ay square where a is a parameter which we will 

choose later. Then v dot = 2x x dot + 2ay y dot which is = 2x times -x +4y + 2ay times -x -y cube 

which is = -2x square +8 -2a times xy -2ay to the 4.  

 

So now we can choose a = 4 and the xy term they will vanish and we are left with v dot = -2x 

square -8y to the 4, so we can easily check that v >0 and v dot <0 for all xy not equal to 0 0. 

Hence v = x square +4y square is indeed a Lyapunov function and so we do not have closed 

orbits.  In fact, all the trajectories approach the origin as t tends to infinity and so the system is in 

fact globally asymptotically stable.  
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So now we discuss Dulac’s criterion, let x dot = f(x) be a continuously differentiable vector field 

defined on a simply connected subsect R of the plane. If there exists the continuously 

differentiable real value function g(x) such that delta times g x dot has one sign throughout R, 

then there are no closed orbits lying entirely in R. Unfortunately, there is no systematic way of 

finding g(x).  

 

Let us consider an example, show that the system x dot = x times 2- x - y and y dot = y times 4x 

- x square -3 has no closed orbits in the positive quadrant xy greater than zero. So, let us go 

ahead and pick g = 1 / xy, then del dot g x dot = ddx g times x dot + ddy g times y dot = ddx 

times 2- x - y / y + ddy of 4x -x square -3 / x = -1 upon y which is less than zero. Since the 

region xy>0 is simply connected and g and f satisfy the smoothness conditions, so Dulac’s 

criteria tell us that there are no closed orbits in the positive quadrant.  
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Now we will have a model of the real world is quite use full to know if we can actually rule out 

closed orbits.  So, in this lecture, we outlined three methods that can be useful for ruling out 

those topics, number one was Gradient systems so you show your system is a Gradient system, 

the second is based on the method of Lyapunov functions and third was based on Dulac’s 

criteria. Now all these three are very, very powerful theoretical ideas.  

 

And when work they can be very powerful except that the only issue is that find to get them to 

work in practice can be slightly tricky because there is no real systematic procedure on for 

example you might be struck Lyapunov function. So, it is nice to know that this method exists, 

that it is also nice keep in mind that in practice, they sometimes can be little tricky to use and to 

actually show for your real-world model none the less they are extremely powerful methods 

which you should be aware off. 

 


