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Let us start getting round up with dynamics and nonlinear systems. Now let start with the word 

dynamics, here is a simple definition, it is the study of systems that evolve in time. Now such 

systems may eventually settle down to some equilibrium or they may keep repeating in cycles or 

actually do something much more complicated. Let us now visualise some dynamics, x is the 

depended variable, time is the independent variable.  

 

There is an equilibrium value and their trajectories settled to that equilibrium. You can have 

another scenario, where they do not settled equilibrium; they actually just keep repeating 

themselves in cycles.  The third scenario is where you neither have an equilibrium nor a cycle 

but you keep doing something which is fairly complicated. 
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Now let us take a historical perspective on dynamics the story, really started in mid 1600s with 

Newton. What he did was he invented calculus and he worked on differential equations.  He then 

discovered his laws of motion and universal gravitation and he combined them to explain 

Kepler’s laws of planetary motion.  

 

Now essentially what he did was solved two body problem, which is calculating the motion of 

the earth around the Sun given the inverse square law of gravitational attraction between them. 

Now what proved to be rather difficult was the three body problem. That is the problem of the 

Sun, the Earth and the Moon, this turned out to be very difficult problem to solve, in the sense of 

trying to obtain explicit formulas for the motions of Sun, the Earth and the Moon.  
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Progress then happened in late 1800s with the work of Poincare. What he really did was 

introduce a brand new point of view, what he said was the following: Let focus on qualitative 

rather than quantitative questions. Here is an example of a quantitative question, can we find the 

exact positions of the planets, at all times.  

 

Here is a qualitative question, will our solar system be stable for ever, in other words might some 

of the planets suddenly decide to leave the solar system and go off to another galaxy.  Now what 

Poincare did was developed a geometric approach to answer such qualitative questions.  
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Now let us move on to the first half of 20th century. Dynamics was largely concerned with 

nonlinear oscillators with applications in physics and in engineering.  Now this led to the 

development of the Radio, Radar, Phase Locked Loop and Lasers. In the second half of the 20th 

century computers started to allow us to visualise complex dynamics. Kepler Lorenz in his 

famous 1963 paper observed chaotic motion in a simple model for atmospheric dynamics.  

 

Later in the 1970s, working in mathematical biology, Winfree worked on nonlinear oscillators 

like heart rhythms.  In physics Feigen Baum went on to establish connection between chaos and 

phase transitions.  And in the 1980s there was a famous book by Kuramoto called chemical 

oscillations, waves and turbulence. Now moving on to the beginning of the 21st century, the key 

words that one often hear are complex systems and network systems.  

 

Now usually such systems are large scale and highly nonlinear and their applications all over 

science and engineering.  
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Now we start talking about dynamical systems. There are two main types of dynamical systems, 

one is differential equations where the evolution of the system happens in continuous time. The 

other variant is difference equations, where time is discreet. We focus on differential equations, 

as these are widely used in science and engineering. Very general frame work for ordinary 

differential equations abbreviated as ODEs is x1 dot  is equal to f1 x1 to x n all the way up to x n 



dot is equal to fn x1 to x n the over dot’s represent differentiation with the respect to time t so the 

xi dot is equal to dxi dt.  

 

The variables x1 to x n could be concentrations of chemicals within a reactor or there could be 

populations of different species within an ecosystem and so on.  The functions f1 to fn are 

determined by the specific problem that had.  
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As an example, let us consider Damped Harmonic oscillator here is the differential equations that 

is m d square x dt squared plus b dx dt plus kx is equal to zero, where m b and k are greater than 

zero. Now this is an example of an ordinary differential equation.  What we do is we introduce 

new variables x1 is equal to x and x2 is equal to x dot. Then x1 dot is equal to x2 and x2 dot is 

equal to x double dot which is equal to minus b on m x dot minus k on m x which is minus b on 

m x2 minus k on m x1.  

 

The equivalent system when turns out be x1 dot is equal to x2 and x2 dot is equal to minus b on 

m x2   minus on k on m x1. Now recall the general form of the ordinary differential equation that 

is x1 dot is equal to f1is the function of x1 and x2   and x2   dot is equal to f2 is the function of 

x1 and x2 .  So if f1 is x2 and f2 is minus b on m x2 minus k on m x1 then we essentially just 

turn the Damped Harmonic oscillator into general form of the ODEs that we had earlier.   

 



And here are some notes the above system is linear, as all the xi’s on the right hand side are to 

the first power only.  For a nonlinear system, typically the terms are products, powers and 

functions of the xi’s.  For example, x1 x2,  x1 squared sine of x1 etc are all examples of 

nonlinear terms.  
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Now let us consider the example of a swinging pendulum the differential equation is x double 

dot plus g on L sine x is equal to zero.  Where x is the angle of the pendulum from vertical, g is 

the acceleration due to gravity and L is the length of the pendulum. The equivalent system is x1 

dot is equal to x2 and x2 dot is equal to minus g on L sine of x1.  Now we get to this equivalent 

system using exactly the same trick as the previous example.  

 

This system is nonlinear because of the sine x1 term.  This makes the equation very difficult to 

solve analytically.  Now we can use the small angle approximation that is sine x is approximately 

equal to x for x much less than one, which will turn the equation into linear one. But we will also 

try to extract information about the original nonlinear system using geometric methods.    
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The rough idea is as follows now suppose that for a particular initial condition, we just happen to 

know the solution to the pendulum system.  The solution could be a pair of functions x1 and x2   

representing the position and velocity of the pendulum. Now if we construct an abstract space 

x1, x2   then the solution x1 t and x2   t will correspond to a point moving along the curve in this 

space.  

 

Now let just go ahead and plot this we have an initial condition x1 zero and x2   zero we go 

ahead and plot curve. Now this curve is called a trajectory. Space is called the Phase Space. Now 

the Phase Space is actually filled with trajectories, as each point can actually serve as an initial 

condition.  
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Now we will outline the Poincare’s geometric perspective.  Now given the system we want to 

draw the trajectories and there by extract information about the solutions. Now in numerous 

cases such geometric reasoning actually allows us to draw trajectories without actually solving 

the system.  Here are some notes the phase space for the general system is the space with 

coordinates x1 to xn.   

 

So n represents the dimension of the phase space, so the space is n dimensional. Now phase 

portrait is collection of all the qualitatively different trajectories in the system.  
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Now let us have brief discussion on linear versus nonlinear systems.  When you look at linear 

systems they can be broken into parts then each part can be solved separately and then 

recombined to get to final answer. Now they are equal to the sum of their parts and utilise 

methods like Laplace transforms and Fourier analysis. So natural question to ask is given that we 

have such rich theory for linear systems and very well established methods and they behave 

nicely then why not just model using linear systems.  

 

The answer as follows when parts of the system interfere, cooperate and compete.  We very 

naturally get nonlinear interactions.  Additionally, most systems in science and engineering do 

not really act like linear systems.   
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Now here is one way to look at world of dynamics.   On one axis we write down the dimension 

of the phase space and on the other axis we classify system as linear or nonlinear.  Then our 

current focus will be on this regime where we will be dealing with one two dimensional 

nonlinear systems.  

 

 


