Analog Circuits Prof. Nagendra Krishnapura Department of Electrical Engineering Indian Institute of Technology, Madras

Module - 02 Lecture – 05

We know now what a nonlinear two port must look like that is what its characteristic must be in order to have a high gain. It turns out that there are many devices which have these characteristics or almost these characteristics and currently the most popular device is what is known as the MOS transistor. So, what we are going to do now is to look at the characteristic of the MOS transistor and see how it conforms to the constraints we had, and also how it deviates from the constraints we had. What we derived was what constraint we would ideally like to have, now no device exactly satisfies these, they do come very close, and we do use them to realize amplifiers and all kinds of electronic devices. Now, there are been other devices also in the past which been more popular in the past, which are now superseded by the MOSFET, and there will be devices in the future. And one of the later lesson, we will quickly look at those characteristic, but now we will concentrate on the MOS transistor. And it turns out that they are many varieties of MOS transistor and we will look at one particular variety for now.

(Refer Slide Time: 01:06)

The MOS stands for Metal-Oxide-Semiconductor. Now, this was because originally MOS transistor were made using layers of metal oxide and semiconductor. Now, it may not be metal anymore, but we would not worry about it. For us what matters are the I-V characteristics of these devices. If you take courses in device physics, you will understand the internal details of a MOS transistor. Now what did we say we have a nonlinear two port. This is port one, and this is port two. In a MOS transistor does conform to this picture. Of course, we do not use a rectangle for a symbol, we use what is normally use for the MOS transistor which turns out to be like this. Now, again the details of all of these things you may find in device physics course, but for us there are three terminals it is usually drawn like this. This is port one and this is port two. You can see, it conforms exactly to this except for the orientation of the wires and so on, it is exactly the same as this.

So, this is the common terminal and this is the terminal for port two, and this is the terminal for port one. And you also see that the common terminal has an arrow like this to distinguish between that and the other terminal. Now, it turns out of course we do not call them one, two and common by generic terminology like this. In a MOS transistor, this terminal for the input port, this is known as the GATE. The terminal for the output port, this is known as the DRAIN. And finally the terminal for the common port, this is known as the SOURCE. And typically you use the letter G, letter D, the letter S to denote these three terminals. And of course, because we have named the terminals, the voltages and currents are also named in a similar way.

This voltage V_1 is the voltage V_{GS} that is the voltage between gate and source. The voltage V_2 is V_{DS} that is voltage between drain and source. Similarly, this current I_2 is I_D , the drain current; and this current I_1 is I_G or the gate current. So, so far I have not done anything, I have simply drawn a different symbol for a two port, and named the terminals differently. Of course, the naming corresponds to a real device, which is the MOS transistor. So, what we will now look at are the characteristics of the MOS transistor and see how they corresponds to the ideal high gain device that we wanted to have.

(Refer Slide Time: 05:01)

So, again let me repeat the symbol and the notation. This is the source $- S$, the drain $- D$ and the gate – G. We have the gate source voltage – V_{GS} , and the gate current I_G , the drain source voltage $-V_{DS}$, and the drain current I_D. We do not use generic terminology like V₁ and V₂. We will use something that relates to the actual naming of the terminals. Now, what did we want for the small signal characteristics, $y_{11} = 0$, $y_{12} = 0$, y_{21} to be very large, and $y_{22} = 0$. Now the combinations of these two here y_{11} and y_{12} being zero, it said that I_1 or the current I_0 must be constant that is independent of both V_{GS} and V_{DS} . Just show that you can relate this to the earlier convention, I will show this as I_1 and V_1 and V_2 , but I would not do this for too much longer. We will use the terminology associated with the MOS transistor.So, this must be constant, it should be independent of both V_{GS} and V_{DS} at some operating point.

Now, it turns out that the MOS transistor follows this and in fact, it is quite ideal it turns out that I_G is actually zero, and it is completely independent of V_{GS} and V_{DS} . Now, this is true only when the applied signals are dc or very low frequency, but that is ok. For now we will stick to low frequencies, and it turns out this is the case, because the gate terminal of a MOS transistor looks like a capacitor; and in a capacitor, there can be no dc, no steady state constant current flowing, so that is why the gate current is zero. It is very good approximation and in this respect we are lucky it is actually exactly the ideal stuff that we want. We were actually we would be happy if I_G were just a constant in fact we get a constant I 10. So if this is the case, you can clearly see that y_{11} and y_{12} will be identically equal to zero.

Now, what about I_D , so I_D must of course dependent on V_{GS} right, because y_{21} that is I_2 versus V_1 should show a very strong variation. So, I_D must depend on V_{GS} , but it must be independent of V_{DS} that is what the meaning of y_{22} being zero. It turns out this is also more or less satisfied. The expression for the drain current at some operating point, will see what they are, these are some

constants which I will describe later. So, the characteristics are that I_D is $\mu nCox \frac{W}{L}$ $(Vgs-Vt)^2$

are at some operating point. So, the point is this I_D depends on V_{GS} , it does not depend on V_{DS} . So this is also satisfied; y_{22} is zero, because you see that this expression does not contain V_{DS} .

Now, y_{21} is large, now of course, y_{21} is the conductance, so how large it is, it has to be compared to something else in the circuit. It turns out it should be large compared to the load conductance and so on. And we will get some dependents on V_{GS} , you can see that I_D has a square dependents on VGS, which appears to be quite strong. So, MOS transistor does in fact fit the bill, it does have the input current to be zero which automatically makes y_{11} and y_{12} to be zero. And it also has the output side current, the drain current to be dependent on V_{GS} , but not on V_{DS} , so it does satisfy all the constraints that we had, and that is why it such a popular amplifier. Now, another device which is kind of similar, the input current is not exactly zero, but very small that is the bipolar junction transistor that will be treated in some other lesson. For now we will stick to the MOS transistor.