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Lecture - 36 

Network Theorems (3) 

Compensation Theorem (contd.) 

Tellegen’s Theorem 

 

In the last lecture, we looked at the statement of the compensation theorem. And  

worked out a simple example to illustrate, the application of the compensation theorem. 

We promised ourselves at that time. That, we will look at a justification or the proof of 

the compensation theorem in the next lecture. And that is what we are going to do 

presently. 
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We have a network comprising various linear elements. A typical element two terminal 

element is indicated here, carrying a voltage V k carrying current I k. We have a number 

of independent sources. They represent the source the k’th source is indicated here. 

Number of current sources k’th current source is indicated here. The voltage across 

current in the voltage source is indicated by i s k. 



We do not want to use the capital letter because that has been reserved for this. And the 

voltage across the current source is given a small v s k. And there is an impedance Z in 

the network which carrying a current I. Now, the question which you would like to ask is 

what are the changes produced in the network, when Z is changed to Z plus delta Z? So, 

this is the original network and this is the altered network. 
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In the altered network, we have the impedance changed to z plus delta z. Otherwise the 

parameters are the same. However, the variables in the network undergo changes, the 

voltage are the independent voltage source cannot change. Because that is a independent 

voltage source. But, the current changes from i s k to delta i s k, the voltage across the 

current source changes from v s k to v s k plus delta v s k. And this general voltage of an 

element changes from V k to V k plus delta V k and the current in this changes from I k 

to delta I k. 

All this variables in the original network and here are functions of S. We take them to the 

Laplace transform variables. And the impedances or functions of a generalized 

impedances functions. So, we would like to analyze this to find out the alterations in the 

various variables in the network. To do that, since a current I plus delta I, flowing 

through Z plus delta Z. By substitution theorem we can replace this impedance by a 

voltage source, which has got this strength. 



A current in the voltage developed across this is I plus delta I times Z plus delta Z. So, 

this is the voltage of this voltage source, which can be used in the place of this Z plus 

delta Z. And the rest of the network will not see any change. That is the principle and the 

substitution theorem. 
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Now this, a composite voltage source, can be split up in this fashion, which the purpose 

for that will be evident later. But, let us say I I plus delta I times Z plus delta Z is broken 

up into three sources their sum will add up to this. I Z I times Z that is one source, delta I 

times Z plus delta Z that is one source. And I times delta Z that is third source. So, sum 

of these sources will add up to this value. So, instead of this impedance ((Refer Time: 

04:28)) we can replace the series combination of these three sources. And say that the 

conditions in the network will not change. 

Now, so we have as far as this altered network is concerned. We have the various voltage 

sources various current sources. And these three independent voltage sources standing 

for the impedance Z plus delta Z. Now, to find out the conditions in this network under 

these excitations. I use the principle of superposition. So, I take all the voltage sources 

and the current sources origin originally existing plus this single source. 
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So, V s k I s k and this I z, that is I consider the effect of all those sources once. And 

when you do that these two sources must be short circuited; therefore, that is they are not 

present here. And then I would like to find the effect of these two sources alone keeping 

the other sources as deactivated. Therefore, I write delta I times Z plus delta Z and I 

times delta Z, these are the two sources that are acting. 

And all the other sources are deactivated. Therefore, this voltage source is short 

circuited, this current source is open circuited. And similarly all other current sources 

and all other voltage sources. Now, let us look at this network. In this network we have 

essentially the same conditions as in the original network. Because, in the original 

network if you have I z ((Refer Time: 05:53)) I can certainly replace this by a voltage 

source I times Z. 

And the network will not change will not all the parameters, will not all the variables in 

the network will remain the same. So, in the original network instead of the impedance Z 

carrying a current I, I could as well replaced it by a voltage source I z. 
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Therefore, that is exactly what we have here, therefore, the variables inside here for this 

network is the same as the original network. So, this is the original network, original 

conditions. Because, this is same as the original conditions; that means, this I z is 

equivalent simply an impedance Z. And the current here will remain as I, this is V k and 

the current here is I k, this is I s k, this will be V s k and this will be I s k. 

So, this is the all the conditions in this network are the original conditions. Consequently, 

the sum of the conditions here and conditions here must be the conditions in the altered 

network ((Refer Time: 06:57)). Therefore this network will tell us the changes that are 

brought about in the various voltage and currents. So, this we can call this the 

incremental network. And in the altered network the total current here is I plus delta I  



(Refer Slide Time 07:23) 

 

This is I therefore, this has got to be delta I by the principle of superposition. Because it 

is a linear network, the sum of these quantities must be equal to the quantity here. 

Therefore, if this is I this must be delta I. And this voltage this is V k and this V k plus 

delta V k ((Refer Time: 07:40)). Therefore, this must be delta V k and the current here 

like wise is delta i k. And this in the shorted lead here this is I s k this is I s k plus delta I 

s k. Therefore, this must be delta I s k and the voltage here must be delta V s k. 

So, if you solve this network, you will be able to find out all the quantities, all the 

changes that are brought about as a result of change in impedance. That we do not know 

what delta I is, how do we find that out, I mean that is exactly what we want. So, you do 

not know this strength of this voltage source. But, then you observe a delta I passing 

through an impedance Z plus delta Z produces just that much voltage. 

So, again using the substitution theorem in a reverse manner you can replace this by 

means of an impedance, which is Z plus delta Z. So, if you replace this voltage source by 

a impedance Z plus delta Z, delta I flowing through that will produce that much voltage 

source. So, we use the substitution theorem in reverse fashion. And say replace this 

portion by an impedance Z plus delta Z for this. So, delta I flowing through that will 

produce that much voltage. 

So, as far the incremental network is concerned all we have to do is deactivate all the 

original independent sources. Introduce a voltage source I plus I times delta Z in series 



with altered impedance. And put the altered impedance in position Z plus delta Z. And 

this source working into this network will establish currents and voltages in this network, 

which are the increments that are caused as a result to the change in impedance. That 

means, the incremental network. 
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So, we will write here. So, the incremental network will be simply one in which all the 

voltage sources are short circuited. All the current sources are open circuited. And you 

have the altered impedance Z plus delta Z. And you have a source voltage source, which 

is the change in impedance delta Z multiplied by the current, which was originally 

flowing in that element. 

So, whatever this voltage source produces, those will be the changes in the network delta 

V k delta I k. So, this is what we said is the statement in the compensation theorem in the 

last lecture and this is the proof of that. 
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A few comments on this, first of all delta Z is only a change need not be small. You have 

no, where used the fact that delta Z is a small increment could be quite large. It could be 

100 percent, 200 percent, no problem at all. Now, secondly if you compare this statement 

of the theorem with the Thevenin's theorem. If you replace the original network by 

Thevenin's theorem and then change the Z from Z plus delta Z. 

You can calculate the increment that are produced in the load impedance only. Whereas 

here if you find out the changes in all the elements. Whereas Thevenin's theorem can be 

used to compute the increments in the load impedance, as a results of a change. 

Here we can find the increments in the entire network. So, this is a advantage. Now, we 

what we have to see another thing is. 
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The there should not be any coupling between delta Z and other elements in the network. 

Because when we change this, because a coupling elements are destroyed. Therefore, we 

should not have a mutual coupling or coupling through controlled sources between the 

delta Z and other elements of the network. 
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The fourth point if the original impedance Z has initial conditions. The equivalent initial 

condition sources remain the same. That is if originally we had in this impedance some 

inductance carrying a current or a capacitance carrying a voltage and you have to replace 



this by initial volt sources here. They continue to be the same in this network there is no 

problem about that. 
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However, if delta Z has some initial conditions, what we mean is an inductor carrying a 

current or capacitor having a voltage. Then the equivalent initial condition sources must 

be incorporated. That is in addition to delta Z times I we must also have in addition 

source. Usually you have voltage source in series with that to represent the initial 

conditions that are present in delta Z. 

So, this is something which we have to pay attention to. Apart from this you must also 

keep in mind the polarity of this incremental network ((Refer Time: 15:02)) this is the 

incremental network, original current was in this direction. So, delta Z times I if delta Z 

is positive. Then the current must be in the up in the source should be such as to drive the 

current in the opposite direction, this is something which we have already mentioned. 
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. 

So, let us work out an example to illustrate this idea. We have here a Winston bridge 

network, which is used to test a resistor R x. So, these are the values of the resistors in 

the fixed arms. And the resistance of the galvanometer is also 600 ohms. Now, the 

nominal value of the resistance R x is 600 ohms. So, if this is 600 ohms the bridge is 

balanced 600, 600, 1200, 1200, galvanometer current is 0. So, the galvanometer current 

is 0, when the Rx happens to be 600 ohms. 
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So, the nominal value of R x equals 600 ohms. However, this bridge is used to test a 

whole lot of resistors and the tolerance allowed for the resistor is plus or minus 5 percent. 

So, we would like to test a whole batch of resistors. And as you put each resistor we 

should like to define the range of current, which is acceptable if the R x is to be within 

the tolerance. That means, if the resistance is can change from 570 to 630. So, depending 

upon the value of the resistance the galvanometer current centre. 

Zero galvanometer current will not be here, it will be deviate one way or the other. And 

we would like to set up the what is the lower limit of the current; and what is the upper 

limit of the current. If the resistance is to be within the tolerance limits. So, that is the 

problem. 
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So, Rx can change Rx can lie between 570 ohms and 630 ohms and we would like to 

find out the galvanometer current for that. Now, if R x was 600 ohms the galvanometer 

current is 0. So, if from 600 ohms it deviates to 630 ohms what is the galvanometer 

current we would like to establish. Similarly, from 600 ohms it changes to 570 ohms, 

what is the galvanometer current that is you should establish. 

Since the original galvanometer current I g is 0, what we can do is, we can when we can 

use the can use the compensation theorem conveniently. And when Rx changes from 600 

to 630, what is the incremental current. That is produced in the galvanometer could be 

indeed the total current. Because, the original current was 0. 



So, using compensation theorem, we will set up the incremental network for when Rx 

goes to 630 ohms. 
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So, you have the original network 1200, 1200 and the galvanometer current 

galvanometer 600 ohms, this is 1200, this is 600 ohms. And the source resistance is 1200 

ohms and the independent sources are deactivated and here in the galvanometer this is 

1200. And in the galvanometer branch you have the altered resistance, which is 630 

ohms. And you have a DC source, which is equal to the change in resistance, which is 30 

times the original current. 

The original current here can be computed and it will be equal to 4 milli amperes. So, the 

current here is 4 milli amperes in the original network. So, 30 into 4 milli volts. So, with 

this voltage, what is the current in the galvanometer. That is what we should calculate, it 

can be shown you can use this network. And then calculate the current here in the 

galvanometer and it can be shown to be 39.2 micro amperes. 
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In a similar fashion you also value calculate the current in the galvanometer, when the 

resistance changes to 570 ohms. And now the change in the resistance is minus 30 ohms 

and the original current is 4 milli amperes. That means, the voltage will be 120 milli 

volts in this direction. Because delta Z is negative therefore, it should be in the opposite 

direction. So, with this you can calculate the current and this can be shown to be equal to 

40.8 micro amperes. 

So, we can now say that the galvanometer current must be from 30.8 or the 139 point in 

one direction to 40.8 micro amperes in other direction. As long as the current lies within 

that margin the resistance is 570 to 630 ohms. If it exceeds that margin on either side, 

then the resistance goes outside the tolerance limits. So, this is an example of illustration 

of use of compensation theorem in situation like this. Let us work out a second example 

this is a slightly more complicated example, where Laplace transform method is used. 

Let us see, what it is. 
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You have a 12 volt source DC source operating in a circuit, which has one is the 

inductor. And then the switch is closed at t equals 0 connecting a 4 ohm resistor. Find I 

of t for t greater than 0. So, that is the straight forward problem. We can do it is a loop 

kind method of analysis or Thevenin's equivalent and so on, but we would like to use 

compensation theorem for that. 

What we propose to do is, we would like to solve a resistive network in removing this 

inductance. So, then it will be pure resistance, we solve that and we consider that as 

original network. Now, we introduce this inductance here as the additional impedance 

introduced into this circuit. And then use the compensation theorem to find out the effect 

that are produced. 
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So, we can say that we have the original network, which has a purely resistive affair 2 

ohms, 4 ohms. And then another 4 ohms and then this is 12 volts. I can we will use in 

Laplace transform domain. So, I will use this as 12 by s. And in this network if the 

switch is closed at t equals 0, what are the various currents that are produced. 

So, there will be a current here and this current. So, the current here will be of course, 

this I will call this I Ll. So, we will say that is the load current I L, I L of s and I will call 

this I x of s. So, this is original network we can solve for that quite straight forward 

fashion. 

The load current I L of s will turn out to be 1.5 amperes. Therefore, 1.5 by s is that 

current because after all in the DC network 4 2 4 ohms in parallel with the 2 ohms 2 

ohms in series with 2 ohms is a 4 ohms. Therefore the current here is 3 amperes 

therefore, the 1. 5 flows here, 1.5 amperes flows there. So, I x of s is also 1.5 by s, this is 

the original network. Now, we want to introduce an inductance in this circuit and find 

out, what are the alteration that are produced here. 
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So, the in the incremental network, we have this 4 ohms and in the inductance is 

introduced of impedance function is s. And this original source is deactivated that is the 

it is replaced by a short circuit. And here again the switch is closed of course, t equals 0 

and then a 4 ohms this is also, this is also 2 this is 4, this is 4. 

Now, the change in the impedance is s and the original current in the inductance branch 

is 1.5 s. So, the compensation voltage that you get here is 1.5 by the by s that original 

current multiplied by the change in impedance which is s. This is the compensation 

voltage right. But, that is not all because, this inductance here in the network has also a 

initial current, before the switch was closed the inductance is carrying a current. 

And what is that current 12 volts divided by when the switch is open here, 12 volts 

divided drives a current of 2 amperes to this 2 ohms and 4 ohms in series. Therefore, a 2 

ampere current was flowing through that. Therefore we have a two times inductance is 

one. So, that voltage is also should be there this is the initial current. So, the source 

which represent the voltage source, which represent the initial current in the inductor that 

also must be put in place. 

So, this is the incremental network. And you can use this incremental network to 

calculate the current here. When the switch is closed and that current plus this current 

will be the total current. Therefore you have this current can be shown to be I L dash s in 



this you can calculate this. And it can be shown to be or we can say delta I L may be 

likewise better you can use after this is I L we can call it delta I L of s. 
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You can analyze this network and calculate delta I L of s it will be point minus 0.5 

divided by 3 s plus 16 or it can be shown that delta I L of t is minus 1 6th e to the power 

of minus 16 t by 3. So, I L of t here is 1.5 
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Therefore, the total current in this altered network original network is I L will be 1.5 

minus 1 6th e to the power of 16 t by 3. So, this is the answer for this problem. So, this 



example illustrates an interesting application of compensation theorem, where we have 

the reactive element completely removed in the original network. Introduce the reactive 

element as an additional impedance. And calculate the increment that are produced with 

in this network. 

We shall now discuss a new network theorem, which has the name Tellegen’s theorem. 

BDH Tellegen was a research scientist with a Philips laboratories in Netherlands. And he 

proposed this theorem around 1952 or so on. And he did not receive the attention world 

wide at that time 15, 20 years later it was received world wide attention, because of its 

generality. And the fact that the whole lot of network theorems can be derived from 

Tellegen’s theorem. 

You would find in most textbooks it in or circuits theory written prior to 1969 or there 

about very rarely contains a reference to Tellegen’s theorem. But, now-a-days it would 

not be should be difficult for us to spot a textbook a modern textbook, which does not 

contain a reference to Tellegen’s theorem. That means, its importance has been boosted 

up. 

This is as a result of the discovery that Tellegen‘s theorem can be employed in studies of 

sensitivities of networks. And similar other situations to a great advantage. In fact, the 

generality of Tellegen’s theorem gives it a unique place for circuit theory. 

It has all the same foot in as Kirchhoff’s law; that means, it has as fundamental to 

network theory as Kirchhoff’s laws in a sense. Let us see what Tellegen‘s theorem is 

statement of Tellegen theorem is. And we would like to illustrate this by an example. 

And use this for one or two application to derive other network theorems. So, we will 

take up first of all the statement of Tellegen’s theorem. 
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Let us consider two networks of identical topology. So, we have a network like this, 

another which has got the same geometry, same manner of connection of elements. But 

these two networks are not the same they have. However, the same geometry the same 

method of interconnection of the various elements. We will call this network a, call this 

network b. 

And we have not made any specific commitment about the nature of the elements, the 

elements here quite arbitrarily. The elements here also quite arbitrarily and this element 

need not be the same as this element. They may be voltage sources, current sources, 

whatever element we have. Now, suppose you take the k‘th element here. That means, 

each element k’th element is a one to one correspondence with k’th element here. 

Because the geometry is the same, suppose we say the voltage across this is v k a in the a 

network and current through that is i k a. We will say small v k a, i k a. Similarly here let 

us say this is v k b and the current here is i k b that the k’th element and like that we have 

a lot of elements. 

Now, suppose I take this voltage of the k’th element here multiplied by the current in the 

k’th element here. And sum them up over all elements I will get v k a multiplied by i k b 

summed on k over all elements in the network. 



Now, let us let me do the other reverse operation take the voltage of the k’th element in 

the b’th network multiplied by the current in k’th element in the a network. Then I will 

get v k b times i k a Tellegen‘s theorem says, both these are equal this is equality. 

You take the k’th element here voltage of k’th element here multiply with a current here. 

Sum of over all possible elements in the network. Similarly, take the currents voltage in 

the k’th element here multiply by the current in the k’th element in the a network. This is 

the summation that you get and both these are equal. And it does not make any 

difference what the elements, the elements could be quite arbitrary. So, this is the 

statement of the Tellegen’s theorem. 

All we demand is that the two networks have identical geometry. We call that identical 

topology; that means, there must be one to one correspondence between the two an 

element here and other element there; from the point of view of interconnection with the 

other elements. 
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Now, proof of this can be given in this manner. Suppose in the a network you have the 

k’th element like this. And let us say the nodes of the k’th element are m and n. So, you 

have the k’th element, this the k’th element you have a voltage V m n in the a network. 

And let us take b network.  
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By the way Tellegen theorem says us not only these two are equal, but they are also 

equal to the 0. You take the voltage of the k’th element multiply the current in the k’th 

element in the b branch sum them up it will be 0. Similarly, if you do the reverse 

operation; that means, both these expressions are equal to 0. So, we would like to show 

this product sum of this product is equal to 0, that is what we are going to establish. 
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So, in the b network also we have a k’th element which is connected between the nodes 

m and n. And the current here is i k b that is the current in i k b. Now, let me multiply 

this is V m n a. Let me multiply this voltage by this current. 
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So, V m n a multiplied by i k b that is what we want to take the product. And then 

multiply do the sum them over all possible elements, so all elements k. So, we do that for 

all elements k we want to show that this is going to be equal to 0. Now, we can write this 

as after all the voltage between the nodes m and n can be written as V m a minus V n a in 

the a’th network multiplied by i k b summation all elements k. This node the voltage 

across the k’th element V m n the drop from m to n. Am writing the node voltage of m 

with respect minus the node voltage of n with reference to some datum node in this 

diagram. 

Now, this can be further be written as all node pairs m n, V m a times i k b minus V n a 

times i k b. So, after all I have expand that and I have put this V m a times i k b minus V 

n a times i k b. Now, if you look at this, what we are trying really doing is. We are taking 

the node voltage V m a multiplied by the current that passes through i k b leaving this 

node m in the network b. So, if you do this for all possible nodes, then what you will get 

is. Suppose you take r an r r’th node r. 

So, we will say all possible all nodes are. So, let us take an r’th node some node you 

have when you have an r’th node here somewhere, then you have various elements 



connected here. So, if you carry this summation over all possible node pairs, these r’th 

node figures whenever there is a current involved in these three elements. And what we 

have seen is when the current i k b leaves the node m we have given it a positive sign. 

And when the current enters the node n we have got a negative sign here. So, if you 

consider state stock of such products summed up over all possible nodes r. Then we have 

Vr figures wherever there is a current. Wherever we take a branch which is incident at r 

is concerned. 

And we are going to multiply V r by a the current through that branch with a positive 

sign. When the current leaves that node r and with the negative sign, when the current 

enters the node r. So, if you look at this carefully we can write all nodes r times or a. Of 

course, a some algebraic sum of currents algebraic sum of currents leaving node r in 

network b. So, these are the currents in the network b. 

So, we have take the node voltage r in the network a multiplied by the algebraic sum of 

currents leaving the node r in the network b. And by the Kirchhoff’s current law this is 

going to be 0. Therefore this will be V r a times 0 and so, the whole thing is 0. So, that is 

the principle of Tellegen’s theorem. What we what it say is you take the voltage here 

multiply by the current in the corresponding branch, sum up over all branches that is 

going to be 0. 

And like wise if you take the voltages here multiplied by the currents here and sum up 

over all branches that likewise is going to be 0. So, this is the principle of Tellegen’s 

theorem. In this one thing we have should note is we have made use of Kirchhoff’s 

current law and voltage law in deriving Tellegen’s theorem. We have already made use 

of Kirchhoff’s current law here. 

You see unless this algebraic sum of currents leaving node r in the network b is 0 we can 

not get this result. We also made use of Kirchhoff’s voltage law, whether we have 

recognized this or not. You observe that I said V m n a the voltage between this I across 

this element k is V m n a. We said is equal to node voltage of m with reference to datum 

minus the node voltage of n with reference to the datum. 



Such an identification of node voltages is possible only if you have Kirchhoff’s voltage 

law valid. Because, when you go round a loop between two nodes. If you get different 

voltages as you take two different paths, then Kirchhoff’s voltage law is not satisfied. 

So, we said we will have when we say a particular voltage node voltage is a definite 

value. Then we have assume that Kirchhoff’s voltage law is valid. So, that is very 

important and that is what we have assumed. 
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So, in a sense Kirchhoff’s current law plus Kirchhoff’s voltage law have been used to 

deduce Tellegen’s theorem. T T means Tellegen’s Theorem. In fact, it can be shown that 

any two will lead to the third. We can also show I do not do it here, but Kirchhoff’s 

current law plus Tellegen’s theorem will imply Kirchhoff’s voltage law. 

Kirchhoff’s voltage law plus Tellegen’s theorem implies Kirchhoff’s current law. So, 

these three are intertwined in such a way that any two will lead to the third one a few 

comments before we take up some example. 
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Few comments on Tellegen’s theorem comments or amplifications of this. It is possible 

that we can make identify a and b, a b may be same network. That means, we are 

applying this Tellegen‘s theorem in the same network. Currents in the one network and 

the currents in the same network. And v k and i k measured at the same instant. So, if 

you take the currents and voltages to be at the same instant Tellegen’s theorem says v k t 

times i k t summed up over all k after there is no point in now saying a and b, because it 

is the same network v k t times i k t is 0. 

This is a statement of conservation of power in the network. If you take instantaneous 

power associated with each element add them up over all element that is going to be 0. 

This is something which we already know. This is a consequence of Tellegen’s theorem 

this is a conservation of power. It is a statement of conservation of power which of 

course, is not very surprising. 

Suppose you have a and b same network v k and i k measured at different instants 

measured at different times. So that means, if you take v k at t 1 and multiply by i k at t 2 

then also it is 0 on something. This is not something which is immediately evident it is 

not a manifestation or conservation of power. You can take currents in this voltages in a 

network at a time t 1 multiply the currents at another time t 2 still their product is 0, this 

is surprising. 
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Third thing a and b of different networks of different networks, but with identical 

topology then only this theorem will work. Then v k a t 1 multiplied by i k b in general t 

2 sum that is also t 2 this is also surprising. In fact, we can even generalize this v k’s can 

be instantaneous values, phasors or Laplace transform. So, can v k a’s, so can i k b’s. 

So; that means, you can have all this all the v k’s can be either instantaneous values can 

be phasors can be laplace transforms. So, can iks b and it is not necessary, that if you 

choose a set of v k a’s as a Laplace transforms i k’s should also be Laplace transforms. 

The surprising thing is I can multiply the Laplace transform of voltages multiplied by the 

instantaneous values of currents. In the second network they have no physical meaning 

the product, but still this is 0. 

It means as long as set of voltages that you take satisfy Kirchhoff’s voltage law as long 

as the set of currents you take satisfy Kirchhoff’s current law. And you know phasors 

satisfy Kirchhoff’s current law, the Laplace transform satisfy Kirchhoff’s current law, 

instantaneous values satisfies Kirchhoff’s current law. 

So, as long as the whole set of v k’s satisfies Kirchhoff’s voltage law. The whole set of 

currents satisfy Kirchhoff’s current law. Then you can use this theorem and you can 

know there is no compulsion for that for us. 



That if v k’s are Laplace transforms i k’s should likewise be i k’s could be instantaneous 

values. Here as a matter of fact any set of variables, which satisfy voltage a constraint 

Kirchhoff’s voltage law constraints. Current law constraints can be used to for this in this 

in this particular application of Tellegen’s theorem. 

And another important feature is the network elements are arbitrary, they can be linear or 

non-linear. Active or passive reciprocal or non reciprocal. Whatever is this um absolutely 

no restriction on the network elements. The only requirement is Kirchhoff’s current law 

and Kirchhoff’s voltage law must be valid and the two networks must have identical job 

atleast. So, that you can put one element in one network in one to one correspondence 

with the other element. 

So, this is very powerful theorem and as I said, when it was proposed by Tellegen around 

1950 did not receive the attention, that was due it was only later on that people found out 

the generality of this. And there is a nice book written by Penfield’s Spence and Duinker 

around 1970, which is titled the Tellegen’s theorem. And it is applications it shows how 

Tellegen’s theorem can be employed to prove several other network theorems. 

And so, that is a very general kind of network theorem and it is a very important one. So, 

in this lecture we had first of all started with the proof of the compensation theorem, how 

an impedance in a network changes from Z to delta Z Z plus delta Z. How the increments 

brought in the network have to be computed by analyzing the network with a single 

source which is equal to delta Z times I. So, if the delta Z carries initial currents and 

initial energies. 

Therefore you have to view another source also. And but, all the other independent 

source inside the network are deactivated. We worked out one or two examples to see the 

advantage of application of compensation theorem in solution of networks. Then we 

went to discussion of Tellegen’s theorem. We mentioned Tellegen’s theorem applies in 

its generality to two networks which have identical geometry or topology as they are 

called; that means, the manner of interconnection of elements is identical. 

So, that one element could be placed into one to one correspondence with another 

element in the second network. Tellegen theorem says that if you take the voltage of a 

element in one network multiplied by the current in the other network. And do this for all 

networks and add them up will turn out to be zero. no matter what the network elements 



are, no matter what type of voltages what whether it is instantaneous values or Laplace 

transform variables that you are talking about. 

No matter what the current variable are, the only requirement is individually the voltage 

variables must satisfy Kirchhoff’s voltage law. In every loop in network in one network. 

And the current variables must satisfy the Kirchhoff’s current law in network in which 

they relate. We will in the next lecture illustrate the Tellegen’s theorem by means of an 

example. And then we will also use it to prove another kind, another network theorem 

named as reciprocity theorem applicable to two port networks; that will be in the next 

lecture. 


