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In the last few lectures, we have discussed the Fourier Transform technique for the 

analysis of linear and networks systems. You recall that, the Fourier Transform 

technique is considered very appropriate, in dealing with networks and systems which 

are characterized by their frequency response function; either because, the frequency 

response function is deduced experimentally using convenient techniques or because, 

the specifications in terms of frequency response, comes naturally for such systems or 

networks. For example: filter networks. 

However, for the analysis of general linear networks for the transient performs that is, 

the Laplace Transform offers a number of definite advantages and for this particular 

application it is unrivaled and therefore, we would like to spend some time now, in 

discussing the Laplace Transformation techniques for the analysis of linear networks 

and systems. For the first few lectures, we would like to discuss what is meant by 

Laplace Transform and find the transforms of several important time functions and the 

properties of the Laplace Transforms. Then, we will take up the question of its 

application, to various network and systems.  

In the Laplace Transformation, the type of Laplace Transformation that we talk about is 

what is called  
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Unilateral Laplace Transform. So this is the type of Laplace Transformation that we are 

going to talk about. What we mean by that is, we assume that f of t is 0 for t less than 0. 

So our discussion will be limited to f of t which is 0 for t less than 0 that means: causal 

time function. If indeed if we have f of t which is fails to be 0 for t less than 0, we 

simply disregard the value of the function for negative values of time. We take it to be 0 

even if it is not originally 0.  

So our discussion will be confined to such functions and this is not a great disadvantage 

because, in transient analysis of networks and systems, some switching takes place at 

particular point of time and what follows the switching operation what is the important 

was. And we can always take the switching to take place at t equal to 0. And the past 

history of circuit, the network and system is summarized in terms of the energy storage, 

in certain elements for example, in the electrical network in the reactive elements.  

So the energy storage in the reactive elements at t equals 0 plus the knowledge of the 

excitation function, from t equals to 0 onwards for positive values of t. These 2 factors 

determine the response of the network uniquely for t greater than 0. Therefore, if you 

know the excitation function only for t greater than 0 and process that; that will not 

entail any loss of generality because, whatever needed about the past history of the 



 

network is summarized by the conditions with the reactive elements. So this does not 

lead to any loss of generality, as far as transient performs is concerned.  

Now the Fourier Transforms of certain time functions is what we have already derived. 

However, you notice that 
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Fourier Transform does not exist. Fourier Transform does not exist for certain time 

functions. For example, if f of t is e to the power of 2t u t then, the Fourier Transform of 

such a function does not exist because, the defining integral for the Fourier Transform is 

which is e to the power of 2t e to the power of minus j omega t dt; when you integrate 

from 0 to infinity that integral does not converge. Therefore, this does not exist.  

So the Laplace Transformation what it does is; enlarge the type of functions for which 

Fourier Transform the type of functions which are handled by the Fourier Transform 

that means: Laplace Transform enlarge the type of function for which, we can find out 

the Fourier Transforms that means: certain functions which are not for which Fourier 

Transforms do not exist, let themselves to Laplace Transformation and therefore, 

enlarge as the class of networks class of functions for which transforms can be found 

out. How do we do that?  
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To do that let us consider the Fourier Transform of not f of t but, f of t multiplied by e to 

the power of minus sigma t. So given a f of t we do not find the Laplace Transform, we 

will not find the Fourier Transform of that as such. Let us consider f of t e to the power 

of minus sigma t where, sigma is chosen to ensure the existence of the Fourier 

Transform of e to the power of minus sigma t f of t. So, even if f of t does not have a 

transform, if you multiply f of t by suitable factor e to the power of minus sigma t, it is 

possible to have a Fourier Transform. For example, if e to the power of 2t is multiplied 

by e to the power of minus 3t then, it becomes e to the power of minus t then, Fourier 

Transform exists; so let us see.  

So the Fourier Transform of e to the power of minus sigma t f of t by the definition is; 

Fourier Transform of e to the power of minus sigma t f of t u t because I mentioned, we 

are assuming this f of t in our Laplace Transformation technique to be those function for 

which, the value 0 for t less than 0 to make it explicit I am putting f of t u of t. 

Therefore, Fourier Transform of f of t u t this is, makes it very clear that this product 

will have 0 value for negative values of time. This is equal to f of t e to the power of 

minus sigma t e to the power of minus j omega t dt. And since, you are talking about f 

of t u t the integrand 0 value for negative values of time. Therefore, this 0 to infinity 



 

instead of minus infinity to plus infinity I am taking 0 to infinity because, f of t u t 

makes it 0 for negative values of time.  

So f of t e to the power of minus sigma t e to the power of minus j omega t dt and this 

will be equal to  
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0 to infinity of f of t e to the power of minus sigma plus j omega t dt. If the Fourier 

Transform of f of t u t is f of j omega then, instead of minus j omega t you have minus 

of sigma plus j omega t.  
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Therefore, this will be a function f of sigma plus j omega instead of, j omega and this I 

will call f of s where, s is a complex variable and the dimensions of frequency and it is 

given by sigma plus j omega. So this f of s now, which is the Fourier Transform of e to 

the power of sigma t f of t u t is now, expressed is also a Fourier Transform but, instead 

of being a function of omega we are treating this as a function of s.  

Now, the Inverse Fourier Transform if you want to find out; Inverse Fourier Transform 

of this f of sigma plus j omega, how do we find this? The Inverse Fourier Transform of 

this must give us f of t e to the power of minus sigma t. So; f of t e to the power of 

minus sigma t. That is the Inverse Fourier Transform of this function. So how do we 

find the Inverse Fourier Transform of usual formula? 1 over 2 pi minus infinity to plus 

infinity.  

Now this is omega of course because, that is the defining Inverse Fourier Transform 

relation for the integration, is in terms of omega this is f of sigma plus j omega e to the 

power of j omega t d omega dt. That is the Inverse Fourier Transformation of this f of 

sigma plus j omega and if you apply the Inverse Fourier Transform you must recover 

back to your original function f of t e to the power of minus sigma t.  
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Now from this you can multiply both sides by e to the power of sigma t then, you get 

this 1 over 2 pi. Now, I am multiplying by this e to the power of sigma t and since, e to 

the power of sigma t is independent of omega which is the variable of integration, I 

push inside the integral sign without disturbing any value. So I can write this f of sigma 

plus j omega e to the power of sigma plus j omega t d omega.  

Now that the range of integration is now, is an omega from infinity to plus infinity. But 

now, I would like to put this in term of the new variable s we have taken. So if s equals 

to sigma plus j omega and omega is the 1 which is vary, then i can write this as 
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if omega is varying then ds is equal to j d omega because, omega is the variable factor 

how does vary s vary and omega vary? ds is equal to j d omega. So, I would like to put 

the entire thing here in terms of s.  
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So, if I do that then what i would get is the integral now, omega is equal to minus s will 

be sigma minus j infinity, when omega is equal to plus infinity s will be sigma plus j 



 

infinity. So it will be sigma minus j infinity to sigma plus j infinity this is the variable of 

integration, f of sigma plus j omega is F of s e to the power of sigma plus j omega t 

equals e to the power of st and since, d omega equals ds up on j i write this as ds and ds 

up on j so i write this 1 over 2 pi.  

So this means: that we are having f of t as 1 over 2 pi j sigma minus j infinity to sigma 

plus j infinity of f of s e to the power of s t ds. So we have, let us summarize what we 

have done so far. We are thinking of finding out the Fourier Transform of f of t but, 

such function of this type do not let themselves to Fourier Transformation. So what we 

can do is, we can try to decrease its growth by multiplying by a function like e to the 

power of minus sigma t and choosing a suitable value of sigma, we can make sure that 

this function decreases with increasing values of t such that, the Fourier Transform 

integral converges.  

So, we are associating with f of t a convergence factor e to the power of minus sigma t 

and this value of sigma is something which depends up on the particular f of t which we 

choose. Naturally for each value of f of t there is a certain minimum value of sigma 

which we should have, we will see about that. So after all borrowed this e to the power 

of sigma t minus sigma t as a convergence factor, we find the Fourier Transform e to the 

power of minus sigma t f of t u t because, we are going to talk about functions which are 

0 for negative values of time.  

Therefore, the Fourier Transform integration instead of starting from minus infinity, we 

can start from 0 itself because; the value of the integrand will be 0 for negative values 

of time. So, consequently the Fourier Transform of this will be f of sigma plus j omega 

where, instead of j omega we have sigma plus j omega because that is, now the variable 

which we like to treat as the new variable s.  

So, we have F of s therefore is; f of t e to the power of minus sigma plus j omega t dt 

which means: f of t e to the power of minus s t dt. After having find out this f of s which 

is f of sigma plus j omega, if you like to get back your original function of time, first of 

we find the Inverse Fourier Transform which f of t e to the power of minus sigma t and 



 

multiply that e to the power of sigma t then, you get f of t which goes like this and 

finally you end up with this.  

So, instead of now always talking in terms of Fourier Transforms by using this 

convergence factor, we must straightaway talk in terms of transformation with reference 

to the variable s. We can straightaway say: that given a function f of t you have the 

transformation which is obtained by multiplying f of t by e to the power of minus s t and 

integrating from 0 to infinity that will give me f of s. And once you have got f of s, we 

can get f of t in this manner using this inverse transformation. And these 2 relations 

constitute the 2 central relations as far Laplace Transformation is concerned.  

So the origin of Laplace Transformation of as an offshoot of the Fourier Transformation 

is what we have discussed now. But let us see afterwards straightaway define the 

Laplace Transformation relations and then study the various properties.  
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So, given any function f of t, we will indicate its Laplace Transformation as F of s 

where, s is the complex frequency variable which is real part sigma and imaginary part 

omega. And so we indicate the a function of time and Laplace Transform pair in this 

manner. F of s is obtained from a given f of t by this defining integral 0 to infinity of f 



 

of t e to the power of minus st dt and this is called the Laplace Transform integral. The 

Inverse Laplace Transform is obtained from the Laplace Transformation F of s by this 

relation 1 over 2 pi j F of s e to the power of st ds.  

Now, the limits of this integration I will explain in a moment. Now for this integral to 

exist as I said, there must be a convergent factor e to the power of minus sigma t is the 

convergence factor which is build into the Laplace Transformation. So, depending up 

on the type of function that we are considering f of t there is a certain minimum value of 

the real part of s that we like to have. 
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So the real part of s here for this integral to exists must be larger than a certain value 

sigma c which, depends up on the function f of t; sigma c depends on f of t and this 

sigma c is called abscissa of convergence. So when deriving the Laplace 

Transformations of various function, we just briefly have a look at the abscissa 

convergence that is required, we assume that the real part of s is greater than this.  

Fortunately, we do not have to keep track of the abscissa convergence in the work 

related with Laplace Transformations because, we always assume that the s value that 

we are using, as a real part which exists the abscissa convergence for the particular 



 

function or set of functions we are dealing with. However, when you want to substitute 

a particular numerical value of s in certain cases then, you have to pay regard the 

abscissa convergence and make sure that, the numerical value of s that we want put into 

the expression, it satisfies that its minimum part is greater than sigma c. Normally, we 

do not want to bother about the abscissa convergence in our routine work.  
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Then, so in this transformation that means if you take this is your complex plane; s 

plane sigma and omega. So, there is a certain abscissa convergence sigma c. That sigma 

t depends up on the particular function that we are dealing with as I mention. And in 

this integration that we are having, the Inverse Laplace Transform integration we are 

you recall that, when we derive this from the Fourier Transform theory, we said c sigma 

minus j omega j infinity to sigma plus j infinity. So, instead of that I simply put c minus 

j infinity c plus j infinity where, c is the value which is like this. So, we do this 

integration from c minus j infinity to c plus j infinity where, c is the real part of s.  

So, instead of sigma I am using value of c just for convenience sake. So, c minus j 

infinity to c plus j infinity is the contour of integration. So, we are taking starting from c 

minus j infinity and integrating up to c plus j omega in this direction. This is what is 

called Bromwich contour. In literature this is called Bromwich contour and so we are 



 

integrating this F of s e to the power of st along a vertical line in the complex frequency 

plane along which, Bromwich contour c minus j infinity to c plus j infinity where, the 

value of c is greater than sigma c.  

So, what we have therefore is the sigma c defines the region of convergence. This is the 

region of convergence of the Laplace Transformation integrals of abbreviated as R O C. 

So, the Laplace Transformation exists provided the value of s is the region of 

convergence that means: the real part of s must be larger than sigma c which is the 

abscissa convergence. So real part of s which is given by sigma, is must be greater than 

sigma c. As far as the integration in the Inverse Laplace Transformation is concerned, 

we take a vertical line in the region of convergence that means; the real part of s could 

be any general value of c but that c should be larger than the abscissa convergence 

sigma c.  

So this is the, these 2 are the fundamental relations relating to Laplace Transformation.  
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We can also abbreviate this as Laplace Transform of f of t we can write this F of s and 

we can write Inverse Laplace Transform of F of s equal to f of t. This is the alternate 

way of writing the forward transformation and transformation in the reverse direction.  
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So these, then is the general relation that we need to we have keep in mind and therefore 

we proceed further, let me make a few commons. One we will first say that the real part 

of s should be the abscissa convergence and this must be kept note of whenever, you 

want to substitute numerical values of s as I mentioned earlier. Normally, we do not 

want to keep track of sigma c in our usual routine work.  

Secondly, if f of t has the impulses at the origin then, when you integrate from 0 to 

infinity the impulses are sitting right at the origin. So, to take of impulses which are 

present in the origin, we need to integrate through the impulse. Therefore, we must start 

the integration 0 minus. So, the Laplace Transformation integral is taken, to start from 0 

minus, to take care of impulses at the origin, if any in f of t. 
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So, F of s 0 minus to infinity f of t e to the power of minus s t dt. If f of t does not have 

any impulses at the origin, it does not matter whether you take it from 0 or 0 plus or 0 

minus. But, if f of t has impulses at the origin and if you want to include the impulses in 

the origin your transformation, you must perforce start the integration from 0 minus. So 

normally, when we define the Laplace Transformation integration, we take it starting 

from 0 minus to infinity you take into account these impulses also.  

A third point which we like to notice: that in the complex frequency plane this is the 

Bromwich contour and we are taking the integration along this and so as you move 

along this line, you are incrementing omega. So you can say, you can divide this entire 

contour into small intervals of width delta omega and suppose, you have the centre 

point is omega i then, we can think of f of t as composed of elementary exponential 

signals of the form; e to the power of sigma.  

Suppose, this is c e to the power of c delta omega i t e to the power of c omega i t, this is 

the exponential signal but the coefficient density given by F of s times delta omega over 

2 pi and we take the summation of all such signals. In other words we take this as limit 

as delta omega tends to zero. Let me rewrite this more clearly: f of t can be a thought of 

as the summation delta omega goes to 0 of number of elementary signals; exponential 



 

signals of the form e to the power of c plus j omega i t. This is the exponential signal 

sitting at this point in the complex frequency plane. And its coefficient is F of s delta 

omega by 2 pi. This is the coefficient density; we can treat this as the coefficient density 

just as, we are treating in the case of Fourier Transform.  

Now in the case of Laplace Transform the coefficient density is F of s because ,the 

complex frequency signal is e to the power of st, rather than e to the power of j omega a 

t and the density is defined as; so much coefficients per cycle per second. Therefore, 

delta omega pi 2 pi what we have taken. And if you take this limit then, this becomes a 

integral, so instead of delta omega we are putting delta s. Therefore, this can be taken as 

1 over 2 pi j integral F of s ds pi 2 pi j, ds by j becomes d omega and then e to the power 

of c plus j omega i t is the running variable s. Therefore, e to the power of st and we 

take the limit from c minus j infinity to c plus j infinity.  

So, this is the defining relation Inverse Fourier Transform relation. So, even here just as 

the case of Fourier Transforms, we can think of f of t as composed of number of 

exponential signals of this value where, omega i runs from minus infinity to plus 

infinity along with Bromwich contour and at each particular frequency, spot frequency 

there is certain coefficient density and the coefficient density is given by F of s 

multiplied by coefficient density is F of s. And so the coefficient of this exponential 

signal which is concentrated in the small elemental width can be thought of, F of s times 

delta over 2 pi. This is the coefficient density multiplied by the width, this is the 

coefficient of this particular exponential signal and we take the summation of all such 

elemental signals along this line, then this becomes this Integral.  

So, just as Fourier Transform Fourier Integral split up f of t as the infinite summation of 

exponential signals e to the power of j omega t type, Laplace Transform also can be 

thought of as splitting up f of t as a number of elementary signals e to the power of st 

where, s is the variable along which Bromwich contour and having a coefficient density 

equals to F of s. and therefore the particular coefficient of e to the power of st would be 

F of s ds over 2 pi j that is what we are having. This is the interpretation which would 



 

be useful later when, we talk about the system function h of s just we talked about the 

system function h of j omega when, we are dealing Fourier Transform theory.  

So, this is generally the; what we need to know about the introduction to the concept of 

Laplace Transformation defining Laplace Transform relation and the inverse transform 

relation. Now, we will take up the question of Laplace Transforms of various important 

time signal f of t and find out the abscissa convergence of each of these, in a routine 

fashion. We will do that, we take it up next after having introduce ourselves the concept 

of Laplace Transformation.  

To start with, let us note the condition for the existence of Laplace Transform  
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This condition is usually stated as: f of t should be of exponential order. In other words, 

f of t cannot grow with positive t more than, an exponent of some value or in other 

words, there exist some sigma real value such that, limit as t goes to infinity of e to the 

power of minus sigma t f of t goes to 0. So, there must be some real value sigma such 

that, as t goes to infinity e to the power of minus sigma t pulls down the value of f of t 

to 0, to negligible proportion as t goes to infinity. For example, if f of t e to the power of 

2t e to the power of minus 3t makes it go down to 0.  



 

So, depending on f of t you can choose the values of sigma and the sigma should be 

larger than the abscissa convergence as we have seen or we can put this as: limit as t 

tends to infinity of e to the power of minus st f t goes to 0 for some for real value of 

sigma real value of s some sigma c; so that is what we are having. This is the abscissa 

convergence. So, e to the power of minus st times f of t as you put t tends to infinity 

must go down to 0. It becomes negligibly small. So, the value of real part of s which 

must be satisfy this condition; sigma c which is the abscissa convergence which, 

depends up on the particular function which f of t that we have on hand.  

So this is, in other words, to put this in a very compact fashion we say f of t should be 

exponential order  
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Now, we will take up Laplace Transformation of important time function; important 

functions of time. Let us start with, let f of t be delta t and impulse at the origin. So F of 

s equals 0 minus to infinity of f of t e to the power of minus st dt this is the defining 

integral for the Laplace Transformation. And in our particular case 0 minus to infinity f 

of t is delta t e to the power of minus st dt. And what we have any delta e to the power 

of minus st dt the characteristic of delta e to the power of st that means: this is 

equivalent to delta t times the value of this function at the value of s equal to 0 that is 1.  



 

Therefore, in other words we are integrating delta t dt over the interval 0 minus to 

infinity which includes t equals to 0. Therefore, the value of this is equal to 1. So, we 

have delta t has the Laplace Transformation equal to 1, just like in the case of Fourier 

Transform also delta t equal to 1. This is also the same case F of s equal to 1.  
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So, I will write here a list of f of t and the corresponding F of s and the corresponding 

abscissa convergence sigma c. So, as and then we derive the Laplace Transformation 

we enter them here. So, delta t the Laplace Transform is F of s. As far the abscissa 

convergence is concerned, it does not matter what value of s, what is the real part of s, it 

will always be 1. It does not depend up on this and as well put this as nothing. We do 

not have any special particular restriction on the real value of s.  

Now, let us take f of t as u t; unit step function. Then, we find the Laplace Transform F 

of s as 0 minus to infinity and in this range of integration u of t happens to be equal to 1. 

Therefore, I can write u of t e to the power of minus st dt and since, u of t is equal to 1, I 

may as well drop that and write e to the power of minus st dt because, u of t in this 

range of integration is equal to 1.  



 

Therefore, this will be e to the power of minus st divided by minus s 0 to infinity and 

now, at upper limit is e to the power of minus infinity times t minus s times infinity. So, 

if real values of s is greater than 0 then, you have say minus a small real value of s times 

t, therefore this will be e to the power of minus sigma plus j omega t where, sigma is the 

real part of s.  

So, as long as sigma is positive; real part of s is greater than 0 that means, sigma is 

positive when t goes to infinity the magnitude this which is governed by e to the power 

of minus sigma t. After all this is equal to e to the power of minus sigma t times e to the 

power of minus j omega t. The magnitude of this is 1 irrespective the value of t but, the 

magnitude of this depends up on sigma and t as long as sigma is positive and t goes to 

infinity this goes to 0. Therefore, at the upper limit we make sure that this goes to 0, by 

taking the real part of s to be greater than 0. Therefore that is we have assumed and the 

so at upper limit this is 0 and lower limit when t equal to 0 this is equal to 1. Therefore, 

this becomes 1 over s.  

And therefore, F of s the Laplace Transform of f of t which is ut will be 1 over s 

provided; we take the real part of s to be greater than 0. And that means, the integral 

will converge only if you take that particular condition and that means: the abscissa 

convergence for this sigma c happens to be 0, which is the real part of s; minimum part 

of real part of s that we should have.  
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So, we have the relation now that u of t 1 over s and this Laplace Transformation is 

valid as long as real part of s is greater than 0 that means: sigma c is 0 that means, the 

real part of s must be some positive value which, is larger than 0 of course. So, these are 

the 2 important functions for which we have found out the Laplace Transformation. Let 

us move on.  
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Now, we will take a third function: e to the power of minus alpha t u t. Then, take the 

Laplace Transformation now, e to the power of minus alpha t, u t is of course is 1 in the 

range of integration e to the power of minus st dt which is equal to 0 minus to infinity e 

to the power of alpha plus s times t dt, which is equal to e to the power of minus s plus 

alpha times t divided by minus of s plus alpha evaluated between the limits 0 minus to 

infinity.  

Now, once again we like to make the integral converge at t equals to infinity by making 

sure that, the real part of s plus alpha is positive number. Real part of minus s plus alpha 

must be greater than 0. So, when you make that if real part of s is greater than minus 

alpha, the real part of s greater than minus alpha. At the upper limit real part of s plus 

alpha is greater than 0. Therefore, at t goes to infinity this integral becomes 0 the limit 

of this at t equals to infinity will become 0. At the lower limit 0 this will be of course, 

will be equal to 1. And therefore, this will be minus sign already here. Therefore, this 

will be 1 over s plus omega.  

So, we have s a function e to the power of minus alpha t u t; the Laplace Transform is 1 

over s plus alpha and this integral will converge provided that, the real part of s is 



 

greater than minus alpha here we are taking alpha to be real in this case. If, alpha is real 

this is what we have.  

Now, as far as this integration is concerned it does not matter, even if you have taken e 

to the power of minus zt z is complex then, we go through the same arguments, same 

analysis it will be 1 over s plus z provided, the real part of s is greater than minus of the 

real part of z or the real part of s plus z is greater than 0. So, even this u t of course. So, 

alpha did not be real, it could be even a complex number even if z is z complex, the 

same relation should be valid. So, I will write here: e to the power of minus alpha t 

alpha real 1 over s plus alpha, this is minus alpha minus zt z complex 1 over s plus z 

minus real part.  

So, once we have the relation, we can find out the Laplace Transformation of 

trigonometry function  
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Suppose, I take cos omega naught t u t. This can be written as one-half of e to the power 

of j omega not t u t plus e to the power of minus j omega naught t u t. And since, we 

have found out that e to the power of zt minus zt will have 1 over s plus z as its Laplace 

Transformation then, we have instead of that we have j omega not. Therefore, the 



 

Laplace Transformation of that would be one-half of 1 over s minus j omega not. 

Because, e to the power of minus zt has the Laplace Transformation 1 over s plus z. 

Instead of minus z you have j omega not.  

Therefore, you have s minus j omega not and the Laplace Transformation of this would 

be 1 over s plus j omega. So, if you complete this, this will become s over, when you 

rationalize; denominator will become s squared plus omega not squared and the 

numerator will be 2s and divided by 2 and this become s by s square plus omega not 

squared. In a similar fashion if you find out the Laplace Transformation of sin omega 

not t u t as 1 over 2 j e to the power of j omega not t u t minus e to the power of minus j 

omega not t u t that is after all, the sin function can be described in this fashion. This 

can be written as 1 over 2j 1 over s minus j omega not minus 1 over s plus j omega not, 

exactly the same fashion. And in the numerator you get 2j omega not by rationalizing 

the denominator and the 2j will cancel with this.  

So, you get omega over s squared plus omega squared, so that is what we are having. 

And in this derivation the abscissa convergence should be the real part of z; this is the 

running with z. The real part of this is 0 means: the abscissa convergence for both these 

is 0. So, we have the final result cos omega not t. I can write this as omega t because, as 

long as omega t or if you like you can still continue  
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You, do not confuse this omega the real imaginary part of s, we can as well write cos 

omega not t can write this as s over s omega not squared and sin omega not t this is of 

course, always this u t continues with us because, we are assuming this function to be 0 

for negative values of time. This will be omega not over s squared omega not squared 

and the abscissa convergence for this is 0. So that is what we are having for the sin 

function and the cosine function which are truncated at t equal to 0 that means: the sin 

and cosine exists only for positive values of time. Now, we can represent the poles and 

zeros of this F of s in the complex frequency plane  
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For example, for this these are all rational functions of time. Therefore, the poles and 

zeros exist for this. As far as delta t is concerned it has either poles or zeros. As far u of 

t is concerned there is a pole at the origin. As far as e to the power of the Laplace 

Transform e to the power of minus alpha t is concerned 1 over s plus alpha. Therefore, 

there is a pole at the minus alpha. Forget about the z taking these you have, for cos 

omega not t and sin omega not t, there are 2 poles at plus omega not and minus omega 

not. These zeros will depend up on the cosine function and the sin function may be.  

And now, you observe that the abscissa convergence in all these cases. This is 0 the 

abscissa convergence is 0. Therefore, the region of convergence is the region to the left 

of the right most poles. In all these cases you will observe that the region of 

convergence which is defined by, the abscissa convergence is the region of convergence 

to the right of the right most poles. In this case this is there are only 2 poles that means: 

entire region to the right of this pole is the region of convergence. Entire region to the 

right of this is the region of convergence e, entire region to the right of this is the region 

of convergence e that means: the region of convergence is defined by the extreme pole 

the right most poles that, you are having for the particular function, more about this take 

up in the next lecture.  



 

To summarize what we have done today is: we said that Fourier Transforms of certain 

time functions which grow exponentially do not exist and to take care of such 

situations, we can think of introducing a convergence factor e to the power of minus 

sigma t. So, instead of finding out the Fourier Transform of f of t, we can think of the 

Fourier Transform of f of t e to the power of minus sigma t. And then try to find out the 

Inverse Fourier Transform and introduce cancel out the e to the power of minus sigma t 

which we introduce in the first place.  

So, both these formulas which we have let them Laplace Transformation formula 

become, we do not have to introduce e to the power of minus sigma t artificially. If, you 

introduce a new variable s which is sigma plus j omega; so the Laplace Transformation 

evolves from such considerations and we have F of s which is given as f of t e to the 

power of minus st integrated from t from 0 to infinity and Inverse Fourier Laplace 

Transform is 1 over 2 pi j c minus j infinity to c plus j infinity of f of s e to the power of 

s t ds. And this integration is along the vertical line in the region of convergence.  

The region of convergence is defined by: the half plane where real part of s is greater 

than the particular value the abscissa convergence, the abscissa convergence depends up 

on the particular function that we have already on hand. And we then took up the 

consideration of Laplace Transformation of areas important time functions, in particular 

we found out the Laplace Transformation of the impulse unit impulse function at the 

origin which happens to be 1 itself. The Laplace Transformation of the unit step 

function which is 1 over s a particularly simple relation and e to the power of minus 

alpha t u t, the Laplace Transform of that is 1 over s plus alpha. And then cos omega not 

and sine omega not t gives reduce to simple Laplace Transformations of this type: s 

over s squared omega not squared and omega not squared omega not over s squared 

plus omega not squared.  

We will continue this discussion in the next lecture, by enlarging the class of functions 

for which, define the Laplace Transformation and also, we will look at some of the 

important properties of the Laplace Transformation and such. 

 


