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In this lecture, we introduce ourselves to the concept of the Fourier integral and the 

Fourier transform. Let us recall our motivation in discussing the Fourier series. 

Recapitulate, that the characteristic property of a linear time and variant system was, 

that if it is driven by sinusoidal excitation. The responsible also be sinusoidal in 

character. This particular property is valid only for sinusoidal. No, other periodic 

function will have the such a characteristic, will provide such a characteristic. 

And once, this particular property is satisfied. We brought in additional concept, like 

frequency response function, impedance and impedance concepts, which will simplify 

the analysis of linear systems, driven with sinusoidal excitation functions. Now, this 

naturally let us to enquire, how we can analyze the linear system. When, it is driven 

by a periodic non sinusoidal excitation function. And the Fourier series came in very 

handy in the contest. 

In the sense that, very non sinusoidal periodic function can be thought of as composed 

of several sinusoidal of different frequencies. And by virtue of linearity, principle, we 

can find out the response to each one of the excitation functions. And superpose the 

responses to get the total response, under steady state conditions. When, the linear 

system is driven by a periodic, but non sinusoidal excitation function. 

Naturally, you like to see, whether this analysis can be carried forward to a case. 

When, the excitation function is no longer periodic. We will call such excitation 

functions, a periodic function. So, when a function is periodic, is it possible to for us 

to consider, that a periodic function has composed of different sinusoidal functions of 

different frequencies. 

Surprisingly, the answer is yes. And this constitutes the discussion of the subject 

matter of our discussion under the Fourier integral, Fourier transform methods. I use 



the words surprisingly not without justification. Because, when Fourier proposed that 

any a periodic function can also be a thought of as composed of several sinusoids. 

You did not gain immediate acceptance from all the mathematicians. 

And actually, the fact that the periodic function can be composed of several 

trigonometric functions of different frequencies. Appears have to be known, even 

before Fourier, even though, the earlier work is did not carried out this analysis to a 

logical limit logical extent. But, it is the singular and unique contribution of Fourier to 

extended this kind of analysis to a periodic functions as well. 

What he really said was, that if you have the periodic function, it can be thought of, as 

the sum of several sinusoidal with infinite number of frequencies. Infinite number of 

such small components, each with vanishingly the small amplitude. And if you put all 

of them together, you will get the given the periodic function. So, let us see, how we 

go about splitting up a given a periodic f of t into various sinusoidal components of 

the description, which we gave just now. 

The key to the whole idea is, that if a particular periodic function is given. We can 

assume that the period is infinity. We are extending from minus infinity to plus 

infinity. And what happens, beyond plus infinity on one side and what happens, 

beyond minus infinity, we will not bother about it. So, any periodic function can be a 

thought of as a periodic function with period extending from minus infinity to plus 

infinity it occurs just ones. 

So, that means, the period of this is going to infinity. What is the consequence? The 

consequence is, that the frequency of this is 0. And so, if the frequency of this 0 is 0, 

then how are we going to think of various harmonic components. Because, in the 

Fourier series, various frequency components, that are presented integrally related, 

integral multiple of the fundamental frequency. 

Here, the fundamental frequency is 0. And in the Fourier series the only term, which 

has the fundamental frequency, whose frequency is 0 is the dc term and after all, the 

dc term can split, any periodic function. So, must look for a different approach all 

together. So, let us see, how we develop this. So, basically the key idea as I mentioned 

is, that we think of the period of this periodic phenomenon to be infinite extending 

from minus infinity to plus infinity. 



So, what we will do is, will start with the Fourier series of a periodic function. And 

then see, what happens, when the period becomes larger and larger, till it goes out to 

infinity. So, the limiting process, we will find out, how the various frequency 

components arise and what their amplitude will be and so on and so forth. 
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So, let me start with a function, which is periodic, period T naught. Just give a concrete 

example; I will take a specific wave form. But, all over discussion will be in completely 

general terms. So, we have periodic pulse strain of amplitude A and pulse duration d 

and the periodicity being the T naught. 
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We know the spectrum for this, would be something like this. Where, this is C n and 

we know that, C of n is A d upon T naught sin n omega naught d upon 2 by n omega 

naught d upon 2. This is something which we have talked about several times. So, let 

us look at the spectrum. And since, this is going to be a real number, because the 

function is even. So, it is going to be a real number. 

I am not plotting the phase and magnitude separately; I am plotting the entire C n 

itself directly. So, it is either way. So, it is always either positive or negative. The 

height of this is A d upon T naught and the first 0 occurs, when n omega naught d by 

2, happens to be pi. Therefore, the frequency corresponding to this 2 pi upon d. So, 

this is the nature of the spectrum, for a periodic pulse strain like this. 
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And if we wanted to find out, f of t from this, we certainly write this as n from minus 

infinity to plus infinity of C n e to the power of j n omega naught t. That is what gets. 

This is the general that we are getting. This particular C n; that we are getting apply to 

this specific wave form, this is the general formulation. The general formulation for C 

n; in general case would be 1 over T naught minus T naught upon 2 to plus T naught 

upon 2 of f of t, e to the power of minus j n omega naught t, d t as we already know. 

So, these are the two general expressions for C n and this is the f of t, which is the 

Fourier series for this wave form. So, these are two general expressions. In the 

particular case of a periodic pulse strain, this would be the particular value of C n. 

That would derive for our special case that we have considered. 
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Now, let us see, what happens, when we have a periodic pulse strain, a periodic 

function again. But, the period become very large, large period. I will simply say T 

naught of L will indicate as the large period. We have the same wave form, but the 

period becomes very large. So, I can put in this fashion. I have the same pulse of 

amplitude A, duration d. But, the period is very large. That means, the next pulse 

occurs after long period, very large period. 

So, consequently, I will the angular frequency corresponding to this. Angular 

frequency here is fundamental period angular frequency is omega naught. So, we will 

say, fundamental of this is delta omega naught, I am saying. So, it include emphasize, 

there is the small angular frequency delta omega naught. So, T naught of l is 2 pi over 

delta omega naught. 

So, what would be the consequence as far the spectrum is concerned. Now, look at 

this, this is the formula for C n. Now, what happens, if T naught becomes larger and 

larger, A d upon T naught becomes smaller. That means, the initial height here, the 

amplitude will become smaller. And if you have very large T naught, this becomes 

almost negligible smaller and smaller. 

I am sorry, what we should say is, C n is naught continuous thing. C n will be, this is 

the envelope, what we have drawn is the envelope. The actual C n will be at discrete 

point on this. Because, the spacing between two lines being delta omega naught. The 



fundamental frequency, this is what we had in the first place. What I have to drawn 

here is, the envelope of C n. 

So, the actual C n will be presented only at discrete points. And this is the line 

spectrum and the spacing between two adjacent components is omega naught. Now, 

when we make the period larger and larger, keeping the pulse with same d; what you 

have is, A d upon T naught is smaller, very, very small. So, the result is, that after all 

2 pi by d remains invariant. Because, the 0 occurs here, when n omega naught t by 2 

is pi and that corresponds to 2 pi upon d. 
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And therefore, what you are having here therefore is, that you will have, if you plot C 

n, the envelope will be like this. And what happens to the lines, previously the 

separation between two lines is omega naught. Now, since the fundamental frequency 

is delta omega naught, which is smaller, the lines comes closer and closer. The lines 

become closer and closer, the whole amplitude comes down. 

Now, what we really want to know is, what happens when T naught close to infinity 

Because, we want to treat a periodic function as function of infinite period. So, if T 

naught becomes infinitely large. Then, obviously, the whole thing squashes down to 

the horizontal line, because the amplitude becomes 0. So, that will not give us any 

useful information. So, must see some other way of handling this information. 



So, what we should like to see is, you have some kind of new quantity, which we 

should plot, which will not become 0, which will be meaningful. And which will give 

us an idea of the relative changes of the various wave harmonic components. So, to do 

this, what we will think of is, instead of C n, after all the whole problem has come 

because, C n has 1 over T naught upon this. 
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So, C n is the Fourier coefficient. It represents to us the amplitude in a sort of fashion of 

e to the power of j n omega naught t term. Instead of that, if I plot C n time T naught, so 

in our case, C n stands T naught of l. This I can write it as, C n times delta f naught. 

Because, the delta omega naught is the fundamental angular frequency, delta f not is the 

corresponding frequency. So, I can write this as C n upon delta omega naught upon 2 

pi. 

So, you plot this quantity, we are going to multiply this C n by T naught of l. That 

means, as far this particular wave form is concerned. Here, multiplying C n with T 

naught, then you are going to plot A d sin omega naught t by two upon n omega naught 

d upon 2. Therefore, the spectrum will now be restored to it is original side. 
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So, what you are plotting now will be having this envelop, which is exactly the same as 

this. But, the lines will become closer and closer. And what you are plotted here is, C n 

time T naught of l large T naught. And the amplitude will be, since A d is multiplied by 

T naught. This will be A d. And the spacing between two particular lines becomes delta 

omega naught. And this frequency corresponds to 2 pi upon d, because that is not 

changing, d is the same. 

So, we now see, that if we do not want to deal with C n, but C n times T naught of l. 

Then, we can think of a meaningful way of representation the various harmonic 

components and what is the relative size. 
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Since, this is C n. The coefficient per unit frequency, this is called coefficient density. 

Whereas, this is Fourier coefficient, this is called Fourier coefficient density. This is 

called Fourier coefficient density and once, you have the concept of coefficient density. 

Then, f of t can be written as further. I will write here, f of t can be written as, you 

recall f of t is the Fourier series expansion is this, n minus infinity to plus infinity C n, e 

to the power of j n omega naught t. 

But, instead of C n, I would like to talk in terms of the coefficient density. So, I will 

write this as, C n upon delta omega naught over 2 pi; e to the power of j n omega 

naught t, sum from n minus infinity to plus infinity. And since, I have divided by delta 

omega naught by 2 pi. I have to multiply by delta omega naught and then, I have to 

write here 1 over 2 pi. So, that would be the form of the Fourier series now, in terms of 

coefficient density rather than the coefficients. 
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Now, let us see what happens, when you have a periodic function. In the periodic 

function, we still take this same function of same pulse of amplitude A, duration d. But, 

there is no other pulse involved, the period is infinity. So, infinite period, so imagine 

that we have this situation here, where now delta omega naught tends to 0. So, what 

this consequence of this T naught goes to infinity, delta omega naught become smaller 

and smaller. 

So, what happens the spectrum now, A d is independent of your T naught. So, that 

remains the same. This 2 pi by d remains the same. All that happens now is, as you 

increase the period, delta omega naught become smaller and smaller. These lines come 

closer and closer will be more lines. And the limit, you will find a particular line at 

every point on the x axis. 

So, that in other words, you will get a frequency component at every point on the x axis 

rather than the discrete point along the x axis. Because, delta omega naught become 

smaller and smaller. So, the line gets crowding almost next each other at every point on 

the curve. And therefore, we can say n delta omega naught, which n delta omega 

naught what is significant n delta omega n delta omega is the frequency at which a line 

exists in this spectrum now a line theoretically exists at every point on the spectrum. 

So, n delta omega can be replaced by continuous running variable omega. So, that is 

how the limiting process occurs as the fundamental frequency become smaller and 



smaller the harmonic exists at every point along the omega axis. So, in the limit you 

will have a frequency component at every point along the omega axis. So, the spectrum 

now would be just like this. But, a continuous spectrum, because you have at every 

point, there is a meaning for this amplitude. 

So, this is the continuous spectrum and the dc value here it is A d. And x axis in terms 

of omega as before, every where is the omega, this is n omega naught of course here. 

This is n delta omega naught and here, the running variable is the omega. So, what we 

have here is, when arrangement where you have every frequency presents. But, the 

coefficient density corresponding to each frequency is different. That is dictated that is 

given by the spectrum. 
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So, let us see what happens, the coefficient density is now, C n times T naught, 

wherever we are having is called now F of j omega. That is F of j omega. How do we 

get now F of j omega, here you observe, that in the C n is given by this formula, the 

coefficient density is obtained by multiplying C n by T naught. So, once, you multiply 

C n by T naught, what you are having is, the integral relation minus T naught 2 plus T 

naught upon 2, f of t, e to the power of minus j n omega naught t, d t. 

So, in our case it happens, because T naught is multiplied by this. So, what you here is, 

it is this formula, applicable to the periodic case. And what is the period T naught by 

minus T naught upon 2 and plus T naught upon 2 are infinity. So, you are integrating F 



of t multiplied by something over a complete period, which is extended from minus 

infinity to plus infinity, f of t and e to the power of minus j n. 

N omega naught now, in the first case, it is replaced by n delta omega naught here. And 

when you go to a periodic case, n delta omega naught is a continuous running variable 

omega naught. Therefore, this will be the f, e to the power of minus j omega naught d t. 

So, the coefficient density in the A periodic case will be f j omega, which is minus 

infinity to plus infinity of f of t, e to the power of minus j omega naught t d t. And this 

is called the Fourier transform of f of t. 

Now, what is the corresponding result for the Fourier series, that means, Fourier 

transform is an equivalent of what we had for c of n. The formula to getting the Fourier 

coefficient, we had some formula. The corresponding formula here is, the Fourier 

transform, instead of C n, we deal with F of j omega. Why I will explain for a moment 

later, about the notation. 

Now, what is the result we have corresponding to this, f of t in the periodic case is 

expressed as the sum of different exponential functions. Now, what is that we have 

here, f of t as you recall in the case of large period is this. So, now, we have to take the 

limit of this as delta omega naught becomes goes to 0. So, limit of f of t, limit of this 

series as delta omega naught goes to 0, means we have to take the integration. After all, 

C n omega naught by 2 pi, f of j omega, this is F of j omega. 
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Therefore, we have to write here as the f of t, write it here. Limit as delta not omega 

naught goes to 0 of 1 over 2 pi, the summation of C n over delta omega naught over 2 

pi, we call that f of j omega. So, f of j omega, e to the power of j omega t, because n 

omega naught becomes, n delta omega naught becomes. Here, also delta omega naught 

in the large case, n delta omega naught becomes omega and then, this is delta omega. 

And the frequency omega, because n from minus infinity to plus infinity. That means, 

omega is minus infinity to plus infinity. So, thus really becomes 1 over 2 pi. So, that 

summation in the limit becomes integration from minus infinity to plus infinity and 

omega f of t e to the power of j omega t d omega, this is f of t. So, this is f of omega, 

this is must be F of j omega the same. 

So, instead of Fourier series for f of t, instead of f of t is being thought of the 

summation of several exponential functions like this. What we are really having is, f of 

t is consisting of similar exponential functions, e to the power of j omega naught t, 

where omega can take any value from minus infinity to plus infinity. Each of these is 

multiplied by a coefficient, which is F j omega d omega by 2 pi.  
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And you are integrating that over the complete omega axis from minus infinity to plus 

infinity, this is f of t. And this is called Fourier integral, this is called Fourier integral. 

So, instead of series, you have an integral and instead of a formula like this for 



calculating the Fourier coefficient. You are calculating the Fourier coefficient density, 

which is referred to as a Fourier transform. 

Now, a few words about this, why we get this 2 pi here. This 2 pi arises, because we are 

calculating the Fourier density, coefficient density in terms of frequency rather than 

omega naught. This is, how it is conventionally defined, therefore, because we are 

talking about the coefficient density. In terms of having the denominator frequency 

rather than in hertz rather than radius per second, we get this 2 pi term. 

And secondly, we call this F of j omega instead of f of omega. Because, later on, we 

like to relate the Laplace transform, where this f of j omega can be a thought of as a 

special case f of s, we deal with Laplace transform domain. Therefore, it would be 

convenient for us to put this f as j omega, because after all, when you talk about the 

exponential terms here. 

Every j is accompanied by every frequency is accompanied by j. So, j omega would be 

all right. You can think of f of omega as well, but f of j omega would be more 

convenient for us to use. 
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Now, let me quickly summaries, what we have done up to this stage. We started with a 

periodic function. The formula for finding the Fourier coefficients for the periodic 

function is this, we know general function. And once, we have the various coefficients, 



we can construct the f of t by combining all such exponential terms from minus infinity 

to plus infinity. This is the Fourier series and this is the integral; that we use to 

calculating the Fourier coefficient. 

Taking a particular case of a periodic pulse strain, we showed that it has the spectrum 

like this and the characteristic of the spectrum is, that is the line spectrum. You have 

coefficients only at integral multiples of the basic frequency. Therefore, this spacing 

between two adjutants lines is the fundamental frequency omega naught in radians per 

second. 

Now, then we enquired as to what happens, if we keeps this particular pulse constant at 

the center around the origin and allow this T naught to become larger and larger. So, 

that is the transition, before we go make T naught equal to infinity to see the trends. So, 

as T naught becomes larger and larger, we observe that the amplitude of this various C 

n coefficients become smaller and smaller. 

So, the spectrum, line spectrum we had becomes shallower and shallower. It will be of 

this order. It will be like this and the height will diminish as T naught increases for 

them. But, the another fact, that we noticed was, the spacing between the lines now. 

Instead of omega naught, it was the fundamental frequency, earlier becomes smaller 

and smaller. 

Because, as T naught increases omega naught becomes smaller and smaller. But, this is 

not meaningful to us in the limit, when T naught becomes infinity, because when we 

are moving towards the direction in which the period is considered to be infinitely 

large. So, if the period is going to infinity large, this whole thing become 0. And this C 

n will become 0. And therefore, we will now, no way of knowing, what is the relative 

sizes of two different frequency components. 

So, to beat this problem, what we said was, instead talking about the Fourier coefficient 

C n, let us talk about Fourier coefficient density, which is C n divided by delta f not. 

So, if you request this new quantity, which is C n times T naught the period. Then, 

immediately the trouble that arose, because T naught being the denominator will 

vanish. And then, we had C n T naught will be minus T naught upon 2, T naught upon 

2, f of t, e to the power of j omega naught t d t. And immediately this spectrum would 

be like this, corresponding to this periodic pulse strain. 



So, you have depending upon the pulse width and amplitude, you have certain value A 

d. And this no longer, as period becomes larger and larger. This no longer has to 

become smaller, A d will remain the same, the line will become closer. And the spacing 

between two adjutant sides, delta omega naught, which is the new fundamental 

frequency, which is quite small. 

And we can put f of t as 1 over 2 pi times, this coefficient density times e to the power 

of j n delta omega naught t. I am writing this as times delta omega naught. So, the 

Fourier series now will be in this form. But, instead of C n, we are talking about, we are 

talking in terms of coefficient density. Now, at this stage, we take the limit as T naught 

becomes infinitely large. 

So, if T naught becomes infinitely large, we observed that delta omega naught become 

smaller and smaller. That means, the line, the spacing between the lines becomes 0 in 

the limit; you have a frequency component at every point on the omega axis. So, what 

we started as a line spectrum now becomes continuous spectrum. That means, almost 

every single frequency is presented. 

Of course, almost everywhere, because at this point, we can say this is 0. But, some 

other, nearly everywhere, you have the frequency component present. And what we are 

plotting now is not any more the Fourier coefficient C n, but the coefficient density. 

And we give the new name for the coefficient density, we call that of j omega the 

Fourier transform, which is given by the formula minus infinity to plus infinity of f of t, 

e to the power of minus j omega t d t. That is F of j omega. 

To recover the original function f of t from the f of j omega. Instead of the Fourier 

series, we will have now, take the limit as the summation as delta omega tends to 0 of 1 

over 2 pi times the Fourier coefficient density, times e to the power of j omega t delta 

omega. And that leads us to the formula like this, which is called the Fourier integral. 

So, basically, then we have when we are dealing with Fourier transform for a periodic 

function. 

We have two basic integral to deal with, from the given f of t, we can generate this 

Fourier transform, which is really Fourier transform coefficient density as explained 

here. And once, we have the Fourier transform, we can recover the Fourier function of 



time through this integral. These are the two basic integrals for characteristic of the 

Fourier integral theory. 

Now, we will look into the meaning of the coefficient density and the similarities. And 

the contrast between the periodic function and a periodic function in a greater detail at 

this point of time. After introduced ourselves to the concept of Fourier integral and 

Fourier transform. Now, let us look at the points of comparison of the spectra of a 

periodic signal and a periodic signal. 
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So, if you had a periodic function of time, say period T naught. Then, you have an 

amplitude spectrum magnitude spectrum C n. And a phase spectrum, as you recall the 

magnitude is the human function of n and the phase spectrum is not function of n. So, 

this x axis can be graduated in terms of frequency n omega naught or in terms of n. 

Now, in particular C n here and the corresponding phase together these two components 

together will give me. 

That means, this specifies the magnitude, this specifies the phase. So, it is C n, e to the 

power of j phi n, e to the power of j n omega naught t. So, the significance of these two 

terms, one specifies the magnitude. The other is specifying the phase is C n, e to the 

power of j phi n is the coefficient of this exponential term, e to the power of j n omega 

naught t. 



Likewise, for the negative value of for this n, will have these two terms together will 

give me the conjugate of this. Because, when C n and c minus n are related by 

conjugate relationship. So, this will become C n same magnitude e to the power of j Phi 

n, e to the power of minus j omega naught t. So, all these four put together. That means, 

the magnitude and phase together will give me 2 C n, cos n omega naught t plus phi n. 

So, the meaning of this negative frequency minus n omega naught is only, it means 

that, this is the exponential. This is the coefficient of this j t terms in this exponential 

representation. Even though, the frequency is negative. These two terms together 

combine to provide you with a real frequency of n omega naught t, n omega naught. 

Now, this is the line spectrum and there will be frequency component present only at 

discrete value, along the frequency axis. And they are all integral multiples of 

fundamental frequency and as I said the phasing between two lines is omega naught. 

Whereas, when we have got the, this is the periodic case. 
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In the A periodic case, we have some phenomena, which lose, only one it does not 

repeat itself. The period T naught tends to infinity and we said this will lead to a 

spectrum, which is continuous. And we call that coefficient density F of j omega 

naught, magnitude. And we also have associate with after all F of j omega naught F of j 

omega in general is a complex number. It is complex function; therefore, we have 

magnitude and sign. So, also an angle associated with that it is a continuous function. 



This is argument of f of t omega, which we may call phi j omega. Now, we said this 

coefficient density, what does it really mean. If you take any small interval delta omega 

and the corresponding here, this lies on the spectrum of the two spectra, the magnitude 

spectrum and the phase spectrum together. These two will imply a constituent of our f 

of t. What is that function, F of j omega magnitude, this is the coefficient density. 

That means, over this interval of frequency. The density at the centre is F of j omega. 

Therefore, the total magnitude is F of j omega magnitude time delta omega. It has the 

phase e to the power of j t omega. And then, the exponential representation of function 

of time is e to the power of j omega t. So, this magnitude and this phase together will 

give rise function of time. 

Naturally, on the other side, corresponding to, this is omega. This is minus omega and 

again, if you take two sections of the spectrum of width delta omega. These two 

together will give me, F of j omega magnitude, times delta omega times e to the power 

of minus j Phi omega, e to the power of minus j omega t. So, this portion of the 

spectrum combined with portion of the spectrum. These two together, if you combine 

these two, you will get 2 times F of j omega delta omega cos omega t. 

So, even though you have components, corresponding to negative frequency, what it 

really means. For every negative frequency here, you have positive frequency and all 

together will lead a real function of a cosine term. This is magnitude of course. And 

you have frequency at every point. In other words, what we are having here is not and 

at any given, if you have A periodic case at any given point of time, at any given point 

of time at point of frequency, if you want to know, what is the amplitude, the amplitude 

is 0, vanishingly small. 

But, if you take a small along the omega axis and if you consider this entire slice to be 

representative of one single frequency term at the centre. Then, the amplitude of that 

particular exponential term will be given by this. So, this is called coefficient density. 

So, in other words, f of t is in volts. If f of t is in volts the dimension of F of j omega is 

in volts per cycle per second or dimensions will be volt seconds. 

Whereas, in the periodic case, if f of t is in volts, C n will be in volts. It gives the 

amplitude of each individual component, whereas, here it gives not the amplitude, but 



the magnitude density. It is something similar to, what we you know in your applied 

mechanics courses and so on. 
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You have beam here, we have concentrated loads at point. This is one way of looking at 

it. And then, sometimes you have distributed loads. In case of distributed loads what 

you say is, so much kilogram per unit length. That means, at given point, there is no 

load. But, if you take a small interval and the total load in the interval will be the 

density times the small elemental distances. 

So, it similarly here, you have situation where, each individual frequency component is 

almost negligible amplitude. But, you have over a small interval of along the omega 

axis. You can think of that the sections of the spectrum to represent a function of time, 

which has the amplitude, which is F j omega times delta omega. This is the density, this 

is the total amount. 

So, what we have done is, to demonstrate by taking the limiting case of the Fourier 

series as the frequency becomes smaller and smaller and as the period becomes larger 

and larger. That even in A periodic case can be a thought of, as composed of number of 

different frequency components. In contrast to the Fourier series, which concerns itself, 

with the periodic case. 



Here, we have a frequency component at every conceivable frequency all along the 

omega axis from minus infinity to plus infinity in the exponential representation. But, 

their amplitudes are vanishingly small. So, the amplitude at any given frequency is 0, 

but over a small width, you can think of an amplitude. So, what we are really talking 

about is, the amplitude density of the magnitude density, otherwise called coefficient 

density. 

And that coefficient density is, we term it is F of j omega, because function of omega 

and you like associate j with the term omega. Therefore, it is F of j omega. So, we have 

basically these two relations, which are important, which will use to our further work. 
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The coefficient density F of j omega is obtained from your given f of t as the integral 

from minus infinity to plus infinity of f of t, e to the power of minus j omega t d t. This 

is the coefficient density, which we call the Fourier transform. And once, we have the 

Fourier transform. We can recover the time function f of t by writing the integral 

relation from minus infinity to plus infinity of F of j omega, e to the power of j omega t 

d. 

Both integrals from minus infinity to plus infinity, in one case, we get 1 over 2 pi here. 

The other case, we do not. And as I said, we get this 2 pi, because we are defining the 

coefficient density as the amplitude per cycle per second, f not instead of omega 



naught. And this is called the Fourier integral. That means, you always look at this as f 

of t is being composed of an exponential term the function of time like this. 

And watch its amplitude, F of j omega this is the coefficient density delta omega over 2 

pi. So, this is the amplitude, F of j omega is the coefficient density. So, at this 

frequency, if you want to look this, you take a small interval along the omega axis. So, 

delta omega over 2 pi this is the base, this is the amplitude density. Therefore, this is 

the amplitude. And take the limits as delta omega goes to 0 overall possible frequencies 

and summation overall possible frequencies and that leads to this integral. 

So, what we have done in this lecture is to say that, the any periodic function can be 

thought of as an infinite summation of elementary frequency components. Each with 

vanishingly small amplitude and with all frequencies present along the omega axis. We 

continue next class, next lecture discussion of the properties of the Fourier transforms. 


