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Lecture - 9 

Energy in the Field 

 

Good morning. The last eight lectures have basically set up the basic equations of 

electrostatics. And for the next few lectures we are going to apply these equations and get 

some useful results. Let us again see what we have already done. From Coulomb’s law 

we had that the electric field is equal to 1 over 4 pi epsilon 0 volume integral over any 

volume, the charge density d V divided by... That is, the electric field is proportional to 

the charge at any point and inversely proportional to the distance between the charge and 

the location, where the electric field is measured. It is the square of that distance. From 

this, we obtain various results. One of the results we obtained was that integral E dot d l 

with the minus sign to any point r from some reference point which I am not going to 

specify is a function only of r and we call that function the electrostatic potential phi. 

 

So this electrostatic potential phi does not depend on how we went from the reference 

point to r. It only depended on where r is and from this we also obtain that the electric 

field is minus the gradient of phi. Also from this equation we obtained that surface 

integral over any surface, closed surface, that is what this 0 means, of E dot d S is equal 

to the total enclosed charge divided by epsilon naught; and this implied in turn 

divergence of E is equal to rho over epsilon naught. So, E as a function of r, rho as a 

function of r.  
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So, these two equations are the fundamental equations we work with. One says that there 

is something called electrostatic potential and if you take its gradient, we get the electric 

field. The second says that if you take the divergence of the electric field, you find the 

source of the field namely, the charge density divided by epsilon naught. If you combine 

these two equations, last class we saw, which essentially saying divergence of minus 

gradient phi is equal to rho over epsilon naught, which is rewritten as del square phi 

equals minus rho over epsilon naught and this is what we call Poisson’s equation. So, if I 

have to give names - this is Coulomb’s law, this is electrostatic potential, this is gradient, 

this is divergence, this is Gauss’s law and this is Poisson’s equation. So, this is what we 

have reached as of the last class.  
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It is not very much. Almost all of it you already know. Now what we would like to do is 

to apply all these equations and do something useful. So for that, let me first start with the 

concept of energy in the field. Now we have already have met this concept before. If I 

have a charge Q and I have another small charge little q, we already know that however I 

move this charge from a position r naught to a position r, the amount of work I do to take 

the charge from r naught to r, work done on charge, which is equal to minus integral q E 

dot d l some r naught to r; it is a function only of r naught and r and therefore this came 

out to be q phi. 

 

So, we have already met work. Now the question is, supposing instead of this problem, I 

had a slightly different problem. Supposing I had a charge Q and I wanted to bring 

another charge, say minus Q, close to it. Now obviously I do not have to do any work. In 

fact, I have to do negative work to bring the charge there. But where does that work go? 

If I brought a plus charge here? I did work to bring that charge there. So I did some work 

but where does that work go? One thing I know is that if I now let this charge free to 

retrace the step that it took to come here, I do some work. If I release the charge, the 

forces of electrostatics will accelerate the charge. 
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So in the end, I expect kinetic energy of charge would be equal to work done. That is, this 

work that I did to bring the charge up to here. If I let the charge free to move along this 

path, then the charge will start speed up and by the time it reaches out here, it would have 

gained enough kinetic energy exactly equal to the amount of work I had to do to push the 

charge up there. This is what I expect and I expect this from analogy with gravitation. 

 

I know that if I have a mountain and I have a rock and I roll up that rock to some point, I 

did work on it. Now the amount of work I did on it was m g h. If I let the rock go, then 

the total kinetic energy of that rock - both the linear momentum and the rotational 

momentum - all of it put together must be equal to exactly this m g h. That is, it rolls 

down the hill and converts gravitational potential energy to kinetic energy. This by the 

same analogy, I expect that if the charge moves along that same path without me slowing 

it down, it will pick up kinetic energy like the rock. Exactly equal to the amount of work I 

had to do to push it up. The m g h we call as potential energy and the work done here we 

call as electrostatic potential energy. So it is the same concept. 

 

(Refer Slide Time: 10:46) 

 

 

This is gravitational potential energy, this is electrostatic potential energy. Well, that is a 

nice idea but now my question is supposing I had a bunch of charges, N charges. How 
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much work do I have to do to put those N charges together? In other words, how much 

potential energy does...do the end charges represent? Now the answer is like this. Let us 

say, I have charges Q i at positions r i. So, how will I do it? First, I will take, let us say 

that this is very far away, infinity. I will bring Q 1 to point r 1. There are no charges in 

the universe. So there is no force; electric field is zero.  

 

So this Q 1 comes through without any work done on it. So, W 1 is equal to zero. I did 

not have to do any work to bring charge 1 to the point r 1. Let us now bring the next 

charge Q 2 into this region. Q 2 is brought to this position r 2 from infinity; but as Q 2 is 

brought in, it must fight against the electric field exerted by Q 1. So due to Q 1, there is 

an electric field and this electric field is present all along the path taken by Q 2.  

 

So Q 2 does work. How much work? Well, Q 2 does work, W 2 equal to Q 2 times the 

electric field due to Q 1. So, Q 2 times Q 1 over 4 pi epsilon naught 1 over magnitude r 1 

minus r 2. This is Q 2 times, phi. Now I bring the third charge in Q 3 to position r 3. Now 

Q 3 must do work not only against the electric field of Q 1, it must also do work against 

the electric field of Q 2. So, W 3 which is the amount of work I had to do to bring Q 3 in 

would be equal to Q 3 times the potential due to Q 1 which is Q 1 over epsilon naught 1 

over magnitude r 1 minus r 3 plus Q 3 times potential due to Q 2 1 over r 2 minus r 3 and 

so on and so forth, till we bring in N charges.  

 

So, how much work do we have to do over all? We have to do W 1 plus W 2 plus W 3 

plus etcetera, up to W N. So the total work we have to do, we will call it W is equal to a 

sum i equals 1 to N of W i where W i of each of these terms which is sum i equals 1 to N 

of another sum j equals 1 to i minus 1 Q i Q j over 4 pi epsilon naught 1 over magnitude r 

i minus r j. Where did I get this? Take any particular i that corresponds to a particular W 

i. That W i contains Q i times the summation of terms and what are those terms? They are 

Q j over 4 pi epsilon naught r j minus r i magnitude, since this magnitude...it does not 

matter whether its r j minus r i or r i minus r j. 
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So, this represents the total amount of work I had to do to bring all the charges in and you 

will notice it is not a very simple expression. We will leave something to do, some work 

to make sense of what its equal to. It is not a very obvious expression and we do not 

know how to calculate, what it adds up to; but there is a simple way of understanding 

what this actually is. Let us see how that simple way is. Your textbook actually gives 

another way and you should read both approaches and learn from both. Idea is as follows. 

Let us say I have some charge distribution rho of r and I want to know how much energy 

is stored up in this charge distribution. This charge distribution could be in the form of N 

point charges or it could be in the form of a charge cloud. 

 

Now I am going to assume that this charge was built up bit by bit by bit. So at t equals 

zero, no charge at t equals say epsilon, t equals t naught, I have everywhere epsilon rho of 

r. That is I have taken one percent of all the charges and put it everywhere. The shape is 

the correct shape but much less charge; only one percent of the charge at t equals 2 t 

naught. I have twice epsilon rho of r and so on and so forth. At t equals say N t naught, I 

have whole rho of r. So slowly, in time, I am bringing charge in and building it up. At 

any given time, let us say t equals k t naught, the charge density that is present is rho of r 
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times k epsilon. This epsilon is nothing but 1 over capital N. So you have some fraction 

of rho of r k over N of rho of r. 

 

So, what is the potential due to this rho? Well, we know the potential. Potential is 1 over 

4 pi epsilon naught volume integral k over N rho of r prime over r minus r prime d V. 

This k over N is a constant. Just pull it out. So, what do you get? K over N is a number, 

times 1 over 4 pi epsilon naught volume integral. Now the quantity in square brackets is 

nothing but the final potential due to this final charge. That is the definition of potential. 

The definition of potential is, if I know all the charge, this is how much it is. 

 

(Refer Slide Time: 20:30) 

 

 

So it is equal to k over N phi of r. So at t equals k, t naught phi is equal to k over N phi of 

r and I am going to introduce a little bit of charge. How much? 1 over N rho of charge. 

So, how much work do I do? Well, in bringing in this small amount of charge, I am not 

changing the amount of charge present here by much. So the potential is essentially 

constant as I bring in the charge. So I can say the amount of work I do delta W is equal to 

rho of r over N times k over N phi of r. This is the amount of charge present times d V 

the volume. So, this is the amount of charge which is being brought against this potential. 

But now I have to integrate over all space. The total work I do is the sum of all these Ws. 
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So its total W is equal to sum on all delta Ws; but if you look at this expression which are 

very simple expression because it is a volume, integral rho of r phi of r d V, that part is 

common, times 1 over N square times sum 1 k equals 1 to N of k. k is the only varying 

part. Everything else is constant, but we know what sum 1 to N of k is. That is k into k 

minus 1 over 2, approximately. I am going to say that this piece is N square over 2; the N 

square cancels out, they are left with r. 
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This is a very important result. Let me write it down. You can derive it in many ways. 

This is not the only way to derive it but what it is saying is, energy is required to build up 

a charge distribution and the charge distribution is rho of r is equal to 1 over 2 volume 

integral rho of r times, phi of r d V. Let me just sort of review because I think it probably 

went too fast. 

 

I have a charge distribution here. It can be anything. In order to calculate how much work 

I did, I bring in this charge distribution little by little, 1% at a time, 0.1 % at a time. So, 

when I am bringing say the 50th % of this charge distribution, I am going from 49 % to 

50 %. So the potential that is there is 49 % of the final potential. That is what this k over 



9 

 

N is telling me. Potential has the same shape because I have kept the shape constant but 

the magnitude is less.  

 

Now the amount of work I did, well, I am working against a weaker potential but exactly 

the same shape. So I do less work. How much less work? k over N of the work. What is 

the total work I do? Well, it is fairly obvious I think. Initially I do no work at all. Finally I 

do full work, half way around, down 50 % - I do half work. 

 

So really, the work I do is a triangle. The delta W versus say time goes like a triangle. 

Initially i did not do any work because to introduce the first percent of charge did not take 

any work at all. There was no field to begin with. So there was no work done. Finally 

when I introduce the last percentage of charge, I do a lot of work because I have to 

introduce it against the full potential.  

 

So, it is a triangle that I have and each time I am introducing a bit of charge, I am doing 

this much work and the total work I do is the area of this triangle; and you know that the 

area of a triangle is the base into height divided by 2. That is why this half...because rho 

into phi integrated over all space is like assuming that from the beginning to the end I 

was working against this potential.  

 

Supposing to introduce the first charge and to introduce the last charge I have, I had to 

work against this potential. Then the amount of work I would have to do is the full area 

of the rectangle; but I know that actual work I did was only one half of that rectangle. 

Initially I had to do very little work. Finally I had to do lots of work. So that is where the 

half comes. It is a very important factor of 2. 
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It is...it will keep coming back in all kinds of places. So you should feel comfortable 

when you see one half integral rho phi d V. So that is the energy that is required to build 

up any charge distribution. So what that means if I have four charges in a square and they 

are all separated by a distances, a, it is fairly easy to calculate the potential because you 

know the distances. This distance is a route 2. So you can calculate potential of any of 

these charges. So the potential at all the charges is equal and that phi naught is equal to Q 

over 4 pi epsilon naught times for this potential. The potential due to the second charge is 

1 over a. The potential due to the third charge is 1 over a route 2. The potential due to the 

4th charge is again 1 over a. 

 

So this is the potential. How much is the stored energy? Well, it is Q times phi naught. 

This is the stored energy here plus Q times phi naught plus Q times, phi naught 4 times 

divided by 2. The factor of 2 comes from the fact that when I brought the first charge, I 

did not do anything. When I brought the second charge, I had to do something which only 

when I had brought the last charge that I did the full amount of work. 
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Now, the whole purpose of calculating work in getting a collection of charges together is 

because it has a lot of importance to electrical engineering and you all know what 

element that is. That is the element we call the capacitor. You have already seen it in 

many places. Supposing you have two plates and the plates are separated by a distance d. 

The plates have an area A. I am sure you have seen the formula. The formula is saying C 

is equal to epsilon naught A, over d.  

 

Now, what exactly is this expression saying? What this expression is saying is if I take 

the top plate and add a charge Q to the top plate and if I look at how much work was 

done to introduce the charge Q, I can work out how much stored energy there is and the 

stored energy that is present there is in the form of positive charges sitting on the plate 

due to this charge Q associated with a potential a voltage on that plate.  

 

So you have seen the formula Q equals C times V and you have seen the formula that 

energy equals one half C V square or is equal to one half Q times V. Now, if you look at 

this formula, you can see that is essentially the same thing. This is nothing but Q. This is 

nothing but V and you have your one half. So the formula for capacitor is really saying 

the same thing as energy in a electrostatic field, and what we are going to do for the next 
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lecture or so is we are going to look at the capacitor but we are not going to look at it as a 

circuit element. We are going to look at it as storage energy, storage due to an electric 

field. I have one preliminary that I have to complete. 
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So, let us take get that out of the way. Last time I had told you that if you have a metallic 

body, a conductor, then inside the conductor electric field is equal to zero identity. I did it 

by two different arguments. One argument said, I cannot have circulating currents and the 

other argument said, I cannot have radial currents. The argument against circulating 

currents was that if I have r 1 to r 2 of E dot d l and I call this r 1, I call that r 2. If I go 

this way, I would be going with the electric field. I went this way, I would be going 

against the electric field and so the results would be different. Unless this was identically 

zero that was for fields that were going round and round what about the fields going away 

from a point well if you have any such region look at it from above what you have is an 

electric field that is pointing outwards that electric field is steady which means you can 

use Gauss’s law and say there is a charge inside however that electric field also 

represents a current. 
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So this electric field is also equal to the current divided by conductivity sigma. So, on the 

one hand you had surface integral E dot d S equals Q enclosed over epsilon naught equals 

constant because we are talking about equilibrium. On the other hand you had that this 

thing is also equal to surface integral j dot d S with the 1 over sigma which meant that 

charge was continuously going out of this cylinder. But if charge is continuously going 

out of the cylinder, it is actually equal to minus 1 over epsilon naught d Q d t. The 

amount of charge that is inside must be reducing if charge is going out. This says charge 

is constant, this says charge is reducing. You cannot have both. The only way to make 

sense of having two separate statements like this is to say that electric field is equal to j is 

equal to zero. So, that is what it says: electric field is zero inside a body.  

 

Now, if that is so, then there is an obvious conclusion. The conclusion is, if I have any 

metallic body and I take any two points r 1, r 2 and I draw a line connecting r 1 and r 2, 

that is entirely inside the body. It does not leave. It stays inside the material. Inside the 

material, electric field is 0. What does that mean? It means integral r 2 to r 1 E dot d l. Let 

me put a minus sign there; is equal to phi of r 1 minus phi of r 2. 

 

So this E dot d l integral is nothing but the potential difference between r 1 and r 2. 

Electric field is identically zero; left hand side is 0. Therefore, phi of r 1 minus phi of r 2 

is equal to 0. So it means that every point inside or on the surface of a conductor is at 

constant potential. Any two points have the same potential. So, this is why we are able to 

give voltages to conductors and this is why when we come to a capacitor, we are able to 

talk about voltage of a plate. We are able to talk about voltage of a plate because if I take 

a point here and I take a point there, a line connecting those two points which lies entirely 

within the plate, the electric field is 0 and therefore the potentials are the same. Therefore, 

we are able to say that every point on the plate is at same potential.  

 

So instead of talking about phi of r so there is a, it is a function of position we simply 

give the voltage we do not say that this is the voltage of the plate at this point whereas 

that is voltage of the plate at that point at all points on the plate voltage is the same   
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Now, at the end of last class I had derived Poisson’s equation. Let me write it down 

again. It says del square phi is equal to minus rho over epsilon naught. Now, what does 

this say? For one dimensional problem it says, supposing phi and rho are functions of x 

only. Let... Then I can write this equation. Now it says d square phi d x square where phi 

is a function of x is equal to minus rho of x over epsilon naught, alright? 

 

Now this equation happens to be very important. It is important because supposing I have 

a capacitor system. I have a plate and another plate and let us suppose that this direction 

is x. I choose to ground one plate and the other plate I put at voltage V naught and I want 

to know how to solve for rho and how to solve for phi.  

 

So, I have to solve for this differential equation, but I have two pieces of information. Phi 

of 0 is equal to 0, phi of this distance is given as d phi of d is equal to V naught. It is a 

differential equation, second order ordinary linear differential equation, very simple 

equation to solve; but there is something that makes it simpler still. The region between 

the plates is air, which means there is no charge there. So, I also have for zero less than x 

less than d d square phi d x square is equal to 0. Now we know all about solving this 

particular differential equation. We know that the answer is equal to phi is equal to A 
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plus B x. Just integrate this with respect to x and the integrating constants will give you A 

plus B x.  

 

So, if you now substitute A plus B x and try to solve the boundary conditions, you will 

have A plus B times 0. So A is equal to 0 and on the other side A plus B times d is equal 

to V naught. The first equation allows us to get rid of A; A is zero. So there is no A here 

either. The second equation allows us to get B; so that implies B is equal to V naught 

divided by d. So I can give the final answer. I can say that the potential phi is equal to V 

naught over d times x zero less than x less than d at x equals 0; phi is 0 at x equals d phi 

is V naught. So it satisfies the boundary conditions. 

 

(Refer Slide Time: 42:59) 

 

 

So from this I can find out electric field. The electric field is minus of the gradient phi but 

here only one direction matters. So it is minus d phi d x. So it becomes equal to minus of 

V naught over d. So, if I have a second plate at voltage V naught, first plate grounded, the 

electric field is in this direction. It is negative. It is negative because for a positive voltage 

here, positive charge will come here, negative charge will come here and so the electric 

field is towards the first plate.  
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Now, this still does not tell us what we really want to know. It still does not tell us what is 

rho, alright? What is the charge on the plates? Well, for that, we go back to some more 

high school physics. We apply Gauss’s theorem. Let us look at it. For example, let us 

look at plate at x equals d. Now we have from here that the electric field is a constant and 

is pointing towards the first plate. So, if I have such a situation, what I can do is I can say 

I will take a surface that looks like this. This surface has a flat region with area d A. It has 

a sloping region with the length, call it h. 

 

So the flat area is d A, sloping area is 2 pi r. This is r times h and d A is going to be equal 

to pi r square. Now the electric field is coming straight out, means it is tangential to the 

slope area. So I am only going to see the contribution of the electric field on the flat 

surface. What is more inside the material? I know that electric field is zero everywhere. 

So this piece does not give me any contribution.  

 

So if I do surface integral E dot d S, I only get one surface contributing; that is 2 pi r 

times...sorry, pi r square times this electric field. That is minus V naught over d. 

However, this normal to the surface is pointing in the negative x direction. So this minus 

sign becomes a plus sign. So this gives me the area times the electric field must be equal 

to the charge divided by epsilon naught. Well, what is the charge? Charge is nothing but 

the amount of charge on the plate times the area of that region. So pi r, square over 

epsilon naught. So I can cancel out pi r squares and I get an answer which is very 

familiar, which is that the electric field, what I call the E normal in which, in this case is 

V naught over d is equal to the surface charge divided by epsilon naught.  
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I have skipped a point here. So let me cover that before I lead this problem. When I 

talked about a metallic body, I said that electric field is identically zero. If the electric 

field is identically zero, then the question comes - where is the charge? Well, you know 

the construction. I take an imaginary surface that lies entirely inside but near the surface 

of the body. So at every point on that imaginary surface electric field is zero, which 

means surface integral E dot d S is 0, which means Q enclosed equals zero. So, there is 

no charge enclosed inside a metallic body yet. A metallic body can carry charge. It can 

carry charge because we can always take an isolated metallic body and put charge on it. 

So, where is the charge? The charge must be lying on the surface. The charge arranges 

itself on the surface in such a way that interior of the metallic object has no electric field. 

So now, going back to this problem, I have a normal electric field. I have no electric field 

in there in inside the material; I have some surface charge. 

 

I have to relate the normal electric field to the surface charge. So, what did I do? The area 

times the normal electric field is equal to the charge density times the area divided by 

epsilon naught. So, this allows me to connect the normal electric field to the charge 

density. So what do I get? I get rho naught is equal to epsilon naught V naught over d. 

Now the charge on the plate is this charge density multiplied by the area of the plate. The 



18 

 

Q is equal to area times the rho naught which is equal to epsilon naught A over d times V 

naught and this is where we come to our standard result, which is Q is equal to C V. This 

number quantity C we call capacitance is the thing that we are used to. This is what we 

see in circuit theory. 

 

However in electric fields, when you study it in electrostatics, it is a more general thing 

because it is entirely possible that I create say a sphere. I ground the bottom. I hold one 

part of it at V naught. I hold another part of it at minus V naught and I asked how much 

energy is stored. It does not fit into the simple form. This simple form is only good for 2 

plates. What happens if I have multiple plates? We will see in a short while. May be in 

the next lecture or 2, that no matter how many plates you have, you can generalize this 

concept of capacitance and define a matrix. Which matrix equation? Which basically says 

the same statement? Let us take one more example to understand this, these concepts. 
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Supposing we have a spherical region filled with charge and you are told that the charge 

is a function of radius only. It does not depend on theta. It does not depend on si. It is 

radial and you are told that the electric field inside this material is constant once it leaves 

the surface. Of course it is not constant, but inside the electric field E r is a constant.  
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So the problem is to find out how much charge there is, what is the kind of charge there is 

and to find out the capacitance of an equivalent metallic sphere containing the same 

charge. Problem is straight forward. All we have to do is apply divergence theorem. If I 

take an imaginary sphere of radius r...let us assume the sphere itself is radius a; then I 

know that surface integral E dot d S which is equal to E r times 4 pi r square. This is the 

surface area, this is radial. Electric field is equal to charge enclosed divided by epsilon 

naught. What is the charge enclosed? It is nothing but integral rho of r d r times 4 pi r 

prime divided by epsilon naught. Notice here that I have put Q enclosed. So, what it 

means is the electric field here depends on the charge that is inside the sphere. It does not 

depend on the charge that is outside. 

 

We found that if you took any region and you put a charge outside the charges, field lines 

do not contribute to E dot d S. So you can now have that the electric field is related to 

charge density. Now, this is a, unwealthy problem to look at but luckily we can go to the 

differential form of this which is divergence of E, which is equal to rho over epsilon 

naught. Usually you prefer to work in this because of the symmetry, but since I am giving 

you the electric field and I want to calculate rho, it is easier to work with the differential 

equation.  
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For spherical coordinates, this is what the equation becomes and all you have to do is to 

differentiate, because E r is nothing but a constant E naught. So substituting in, we can 

easily obtain rho. I will complete the problem next time, but I want you to try it out 

yourself because most of the ideas we have talked about in electrostatics can be tested out 

by solving problems like this. For example, look at what happens if you choose a 

gaussian cylinder that is larger than a, and try and plot out the electric field and potential 

as a function of r. 
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