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Good morning. Today we shall complete a few more examples on electric fields and then 

go on to the important concept of electrostatic potential. So, let us first look at one 

interesting problem. Suppose you have two line charges. This is coming out of a problem 

in your textbook - problem 2.21. You have two line charges; each line charge has let us 

say, a charge of rho coulombs per metre. The line charges are at a distance d apart. Now, 

we would like to know what is the force per metre exerted on line charge 2; call this 2, 

due to line charge 1?  

 

Well, in our previous class, we derived what the electric field was due to a line charge 

and the answer we got was by taking points above and points below and integrating from 

z equals zero to z equals infinity, and what we got was that the electric field was along 

the radial direction; it was proportional to this rho. It was divided by 2 pi epsilon naught 

and it is scaled as 1 over r. So for a distance d, this r becomes d. So, it is equal to...along 

the direction, radial direction, rho over 2 pi epsilon naught 1 over d. So, this is the electric 

field.  
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Now, this electric field acts on 1 metre of charge because I want the force per metre. How 

much charge is there per metre? Well, it is nothing but rho itself. So, the force per metre 

is equal to rho times the electric field; both are vectors. I already have the electric field. 

So the answer becomes...the force is along the radial direction and it is equal to rho 

square divided by 2 pi epsilon naught d. So, if you keep two line charges and you...each 

of them has a charge rho per metre, this is the kind of force per metre that they exert on 

each other; which means that the total force between these two line charges is infinite. 

So, line charges are actually very exotic things. You cannot actually create them in 

practical situations.  
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However, if you talk about wires, say an overhead wire, power line, well, those lines can 

be a few metres apart and distance of 100 kilometres; and therefore such very long 

closely placed wires are actually a very good approximation to this picture. So your 

overhead power lines exert force on each other when they charge up to different voltages 

and exert different electric fields.  

 

Another example - I would like to know the force, the electric field due to a disc. A disc 

has a radius ‘a’ and it is of a height...the charge...the point where I want the electric fields 

at height ‘z’. The entire disc has a charge, let us say sigma coulombs metre square. And I 

want to know what is the electric field above this disc, z metres above this disc, and what 

is its direction. Last time I did half of this problem. So, let me just repeat that half. What I 

will do is I will take a ring. The ring has a radius r, it has a thickness d r.  

 

Now, every point on this ring is equally distant from the point where I want the electric 

field, because every point has a distance that is equal to z square plus r square, square 

root. This is just Pythagoras theorem, because it is a right angled triangle. So, it is 

the...hypotenuse square is equal to base square plus height square. However, the electric 

field due to each of these charges is pointing in a different direction. In fact, the electric 
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fields describe a cone. As I move the charge around in a circle, the electric field moves in 

a cone around this point.  

 

(Refer Slide Time: 08:09) 

 

 

So, how do I add it up and find a net electric field? What I do is I take diagonally 

opposite points of charge. If I take two points of charge that are diagonally opposite, then 

what happens is that the two directions in which they point are...will tend to cancel in the 

x y plane, but will tend to add in the z plane. Let me try and make that more obvious. I 

am going to draw the circle looking from above. This is my ring of charge. I am 

considering a bit of charge here. The amount of charge is sigma times the thickness, d r 

times the theta direction thickness which is r d theta.  

 

At a point up here, the field that it will cause will be actually pointing somewhere out. I 

am just projecting it down. So it will look like this. For example, if I took a piece of 

charge here, we could point in this direction. But now, if I took a point diametrically 

opposite on that ring, same amount of charge, sigma d r r d theta, now what is going to 

happen? This charge is going to produce a force. It is again up here. So, the force due to 

this is going to look outwards; force due to this is going to look outwards; but if I project 

it down, the projected parts are going to be equal and opposite. They are going to cancel. 
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So, the only electric field that is left will point straight out. That is, it will point in this 

picture in the upward direction. So, what do you get as a result for the electric field? You 

get d E which is in the z direction; is equal to this amount of charge sigma d r times r d 

theta divided by 4 pi epsilon zero. This gives me the...times 1 over z square plus a square. 

Radius is, well, I can say it is r square. This gives me the length of this arrow but I do not 

want the length of this arrow; I want this length, the vertical length. So, there is an 

additional cos theta. 

 

I am afraid I am using the same symbol twice. So, let me call this cos phi. Phi is this 

angle, whereas theta is this angle. So, now I want to integrate this d E z around the circle. 

So, I get integral zero to 2 pi d E z integrated in theta alone. The theta integration gives 

me 2 pi times sigma d r times r divided by 4 pi epsilon naught 1 over z square plus r 

square times cos phi. Now, if you look at cos phi, cos phi is nothing but z over the 

hypotenuse. It is equal to z divided by square root of z square plus r square. 

 

(Refer Slide Time: 12:26) 

 

 

So when you put it all together, what you get is d E r...d E z is equal to sigma r z d r 

divided by twice epsilon naught z square plus r square to the power of 3 halves. This 

answer still depends on d r and we want the answer for the electric field due to a disc. 
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That is we want to add up rings of different values of r all the way from r equal zero to r 

equals a. So the electric field finally is in the z direction and it is the integral zero to a of 

sigma r z divided by twice epsilon zero z square plus r square to 3 halves d r. This is 

essentially the same equation. It is the same equation that I came up with for solving the 

electric field due to a plane. I ended the last lecture that way. That is because if I take the 

radius of this disc to infinity, the disc becomes the plane. So if I replace this a by infinity, 

then I have the answer for the plane.  

 

Well you can see, this is a very simple integral to solve because you have got r d r up 

there and z square plus r square is your dependence. So you define u is equal to z square 

plus r square; d u is equal to twice r d r and you get the answer z hat. I can pull the z out. 

I can pull the sigma out, over twice epsilon naught; 1 more factor of 2, integral z square 

to z square plus a square of du divided by u to the power of 3 halves.  

 

How I got that was I removed the common...constant pieces out, twice r d r is d u. So, r d 

r is d u divided by 2. The denominator has z square plus r square to the power of 3 halves. 

z square plus r square is nothing but u. So it became u to the power of 3 halves. This is 

easily solved. So you get, this is equal to z hat sigma z over twice epsilon naught, u to the 

power of minus half divided by minus half. The half cancels out; so you get minus u to 

the power of minus half going from z square to z square plus a square.  
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So the answer finally becomes that the electric field is in the z direction. It depends on 

sigma z over twice epsilon zero times 1 over z minus 1 over square root of z square plus a 

square. If you compare with the expression for the plane, the plane is nothing but the disc 

with a becoming large. When a becomes very large, z square plus a square is huge; and 

this huge number is in the denominator, which means 1 over z square plus a square 

square root goes to zero. So, this term will be missing and you will just get sigma z over 

2 epsilon naught z, and z itself will cancel out. 

 

So, this was the result I had given you earlier which was that if you have a plane, an 

infinite plane of charge, whose charge was sigma and you went a distance z from this 

plane and tried to find out what the electric field was, well, it did not matter how far you 

went out. However far you went out, the answer was always z hat sigma over 2 epsilon 

naught.  

 

Now, how can this be? There seems to be something very wrong with this. How can it 

not matter how far from the plane you are? The electric field is always the same. Well, 

there is a reason for it. The reason is actually not that difficult. If you look at a particular 

theta from z, it strikes the plane on a circle; and if you ask how much charge is there 
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between theta and theta plus d theta, the bigger angle is theta plus d theta, it will be the 

charge that is there in this ring. How much charge is that? Well, it is 2 pi times this radius 

times the thickness. 

 

So, it will be...if this is theta and this is z, this height is z sine theta. So, it will be...the d Q 

would be equal to 2 pi times z sine theta times d of z sine theta. Now, what is the 

interesting about this is that it is proportional to z square. So the amount of charge that is 

present increases the further out you go; amount of charge between theta and theta plus d 

theta. The amount of charge is not constant. If I were 1 metre away, I get so much charge. 

If I am 10 metres away, between 30 and 31 degrees, there is 10 times more charge; no 

sorry, 100 times more charge. 

 

However, how far away is this charge? The distance is z square plus z square sine square 

theta, is proportional to r square; square root is proportional to z. You can pull out z 

square out of the square root. So, you get an answer that is proportional to z. So the 

amount of force exerted by this charge force goes like d Q divided by r square. Well, d Q 

is proportional to z square, r is proportional to z. So, r square is proportional to z square 

equals constant. 

 

So, what it means is the further out you go, the more of the charge of the plane you see. 

How much more? It quadruples for every doubling of your distance. At the same time, 

the distances increased and therefore the effect of that quadruple charge has become one-

fourth. So, two effects cancel which is why no matter how far away from a plane you go, 

the force is the same. So the answer is, force remains constant.  
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Now I hope these kinds of examples give you a taste of how one does simple integrals to 

calculate the electric field. Now, in a certain sense, Poisson’s equation is all you require if 

you knew where all the charges are because...sorry, not Poisson’s equation, Coulomb’s 

law is all you require if you knew where all the charges are, because Coulomb’s law tells 

you that the force is equal to 1 over 4 pi epsilon zero integral rho of r prime d v prime 

divided by...  

 

So, if I knew exactly what charge density was everywhere, I just do this integral and I get 

the answer; end of electromagnetic theory. The only problem is, we usually do not know 

where charge is. Let me give an example. Supposing you have a metallic ball and I put 1 

coulomb of charge on this ball. Well, the charges are free to move around because it is a 

conductor and we know that inside a conductor, charges can move, which means the 

charge could be anywhere on the surface and it could be anywhere inside.  

 

So, we cannot use this formula. This formula requires us to know exactly where the 

charge is; whereas in practice, what we know is the total charge and we know the shape 

of the conductors but we do not know exactly where the charge is. See, even though we 

have done quite a bit in writing down Coulomb’s law, we have not actually got to the 
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really useful parts of electrical engineering. In electrical engineering, the most useful 

components are inductors and capacitors and a capacitor is nothing more than a metallic,  

pair of metallic plates which are kept close to each other. 

 

(Refer Slide Time: 24:21) 

 

 

So, in order to tackle this problem, we need to introduce some new concepts. The first 

concept I want to introduce is work done in order to move a charge. When I was studying 

in college, I think work was probably the most difficult concept I ever encountered. 

Angular momentum was about equally hard; but those two concepts drove me quite 

crazy. 

 

So, let me spend a little time trying to understand this word. You should have learned it 

thoroughly in mechanics, but I did mechanics too. I did not understand. See, the real 

confusion that comes is, as human beings, when we carry a heavy ball or we carry a 

weight and we just stand there...I am just holding this chalk and just standing there, we 

feel we are doing work. We feel our body is burning fuel with oxygen, producing carbon 

dioxide so that our muscles can hold up this piece of chalk. Therefore, we are doing work 

and we are quite correct. Our bodies are doing work. 
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However in physics, the word work means something else. The word work does not mean 

holding up a stationary object. If you have a stationary object that is not moving, no 

matter how much force there is on that object, no matter how heavy the object is, we are 

not doing work. A weightlifter, when he lifts the weight and reaches the top, is not doing 

any work. I mean, he will probably hit you if you told him that he is not doing any work 

but he, according to physics, he is not doing any work. He is just standing there. All the 

work he did was not lifting that weight, but keeping it stationary above his head; may 

have caused lot of problems to his muscles, but he was not doing any work. The weight 

was not going any higher.  

 

So, work according to physics and according to engineering means motion of objects 

against applied fields; and the words are all important. You must be moving. If you are 

not moving, there is no work. It must be an applied field. For example, supposing I have 

an object that is under some strain. May be, I have got a compressed spring and I move 

the whole object. I am not doing any work. If I am...if I move the object but the object’s 

internal stresses are the only forces present, I am not doing any work. The forces have to 

be applied from outside and the motion has to be against this field. 

 

For example, supposing force due to gravity is downwards and my weight lifter has got 

his weight and he starts walking. The poor fellow is doing a lot of...exerting a lot of 

effort, but he is not doing any work because the weight is neither going up nor down; and 

up and down are the only directions that are against the applied force. Going sideways 

does not get you anything. It may get you an Olympic medal, but it will not get you any 

work. 
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So, now that we know something about work, how do we calculate work? We have to use 

that definition. So, there is motion and a motion is against a field. So, if I move, if I have 

a gravitational field m g and I move in some direction, the part of that movement, that is 

sideways, does not count. That part of the motion which is like the weight lifter walking 

around does not do any work. It is only the part of the motion that is parallel to the 

direction of the field that does the work. 

 

So, the amount of work that is done, d W is given as the force dot the vector distance 

travelled. So, if this is d s and this is force m g, you take the dot product of the two. If you 

take the dot product of the two, then, only the part that is parallel to the force counts. The 

part that is 90 degrees to the force does not count and that contributes to d W. This is the 

work done by the force on the object and when work is done on an object, usually it 

implies kinetic energy.  

 

So, the object starts moving faster and faster and as you know from this concept we can 

say, since total energy is conserved, the object has lost potential energy and the potential 

energy was nothing but m g h and gained kinetic energy. So, this is exactly what we have 

to do in electricity and magnetism as well, because we have forces. Now the force is 
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called the electric field, instead of gravitation and we have to find out how much work 

charges do when they move in an electric field – it is the same idea. But let us see how 

the idea works out. 

 

(Refer Slide Time: 32:24) 

 

 

So now I have a charge capital Q. I know that if there is any other charge small q, the 

force on that charge is along the line joining capital Q to small q and pointing away from 

capital Q. Now I decide that I want to move this charge from the point A to a point B. It 

can be on any path, whatever other I like. I want to know, is there any concept of work 

done? Is there any concept of kinetic energy of this charge and does this charge gain or 

lose any potential energy?  

 

We know that in gravitation the concept is there. If this was the Earth, this was the 

satellite, the force would point the other way and if the satellite decided to move like this, 

it would have picked up kinetic energy and it would have lost potential energy. Is there a 

similar concept in electricity and magnetism? Well, at every point on this orbit, we can 

work out what the electric field is. We just have to draw straight lines. The lines are 

getting larger as you get closer to the charge. 



14 

 

Now you can see that you are not, you are hardly moving in the direction of the charge of 

the field. So if you move on this line, the amount of work that you will do is only the dot 

product of the field and the distance. So, we can work out. I will call this 1, 2, 3, 4, all the 

way up to point n. So, total work done on the charge...that is, this is the work that would 

have made the charge move faster and faster. It would have given kinetic energy to the 

charge; is equal to r 1 2 dot q E...r 1 let us say, plus r 2 3 dot q E of r 2 plus, etcetera. I 

keep adding them all up till I get to r n minus 1 n dot q E of r n minus 1. I have said r 1, r 

2, etcetera. I could have easily said r 2, r 3; some point, the electric field on some point 

along this arrow. 

 

(Refer Slide Time: 36:07) 

 

 

If I add this all up, this should be the total work done and there is a short hand way of 

writing this sum. Just as we changed Coulomb’s law and made it look like an integral, we 

can make this also look like an integral. We can say that this whole route that we went 

on, we are going to call it a path and typically symbol c is used – contour, c for contour. 

So I will say that I am going to do an integral. It is a vector integral along this root c and 

on this root I am going to do q times the electric field. That is the force, dot d r. Why do I 

say this? If I take r 1 2, r 2 3, r 3 4 up to r n minus 1 n, I have actually built up this entire 

curve. So in a certain sense, if I want to know how much work I have done by moving on 
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this curve, it is like summing up all these little pieces; and you know that a sum 

consisting of very small steps is nothing but an integral. But it is a different kind of 

integral. It is what is called a line integral. It is not your standard kind of integral. Let us 

write one just to see what we mean by the difference. 

 

For example, if I have x and y and I wanted to know going from zero to 1, what is the 

value of f of x, which is equal to integral zero to 1 sine x d x. That is the kind of integral 

we have learned in mathematics, very straight forward. You learned what it is. It is 

integral of sine x of minus cos x and you put it between limits and you get that this is 

equal to 1 minus cos of 1.  

 

So, this is an integral along the real line but I could equally well ask, I want to know the 

integral of going around a circle. I want to know the integral as I go along the circle of 

integral, let us say, sine of x square plus y square d theta. Or, if you like...let us leave it 

like that - d theta. Now, what am I doing? I am saying that I have a circle and I am 

dividing the circle into lots of little pieces. Each of these lengths is nothing but r d theta 

which is equal to d theta because r is 1. It is a circle with radius 1 and I want to integrate 

a quantity called sine of x, square root of x square plus y square. Well, square root of x 

square plus y square itself is nothing but r square which is equal to 1. It is a constant. So, 

I have taken a trivial example. 

 

The point is this also is an integral but it is not an integral on a real line. It is an integral 

on some curve in x and y and more generally, it could be a curving x, y, z, t. It could be 

any general curve. If you talk about intervals of general curves, those are what we call 

line integrals and the particular example that I gave which is q E dot the variable which I 

choose d l I say is an example of line integral; and what it means is if I have a curve, I 

break the curve into many small pieces. On each piece I find the vector corresponding to 

d l. At each piece there is also an electric field. So, I can form E dot d l. That is now a 

number and I will just add it up. Sum I equals 1 to N q E i dot d l i; and if I make these d 

ls very very small, this sum becomes an integral. That is what it means and this is so 

important. I think it is important that you think about it and you properly get comfortable 
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with it. We will keep coming back to this. It will come back to haunt us unless we are 

quite comfortable with the idea. 

 

(Refer Slide Time: 42:14) 

 

 

But what is the result now? The total work done on the charge which is in a certain sense 

equal to minus of change...sorry, in potential energy, we assume total energy is 

conserved. The energy gained, kinetic energy gained by the charge must be the loss of 

potential energy of the charge. It is equal to the integral from the starting point, the 

ending point of q E dot d l. 

 

Now that is interesting. It is just a definition. There is one more interesting thing about it. 

If I have a charge Q and I have a curve A to B, at any point the electric field points in the 

radial direction, it points away from the charge. The distance I move d l does not 

necessarily point in the radial direction but you can always break d l into two parts. There 

is a part which I will call d r and a part that is the rest of it; and its obvious that no matter 

what we do, it is only the part d r that can do any contribution to this integral because dot 

product only counts the portion of d l that is parallel to E.  
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So, you can rewrite this equation as going from integral A to B but q E r d r. That is at 

each point, instead of keeping the full direction of l, I am taking advantage of the 

knowledge that E is always pointing in the r direction. So the only...the r part of l matters. 

So I only keep d r. What does this do for me? Well, if I have got rid of all the other 

directions, I do not have to keep A and B as points; I can say going from r A to r B.  

 

(Refer Slide Time: 45:10) 

 

 

And furthermore, I know an expression for E r. So, let me write that out. It is r A to r B q 

times capital Q over 4 pi epsilon naught. E r is nothing but 1 over r square d r. Integral of 

1 over r square is minus 1 over r. So it becomes q, capital Q, over 4 pi epsilon naught 

times 1 over r A minus 1 over r B. 
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It is a very strange result. What it says is, supposing instead of going this way, I had done 

this. I had looped around this Q many times. I had gone way out, come back, I had gone 

this way and come back. No matter what I did, if I finally landed up in B and if I initially 

started from A, the answer does not change. The answer only depends on where I started 

and where I ended. It does not depend on how I got them; and we have meant such kinds 

of integrals before. Or, if we have not, we should have. 

 

(Refer Slide Time: 46:52) 
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If you have done any course in thermodynamics, you know of things called state 

variables entropy and variables like that that you will encounter when you do the second 

law of thermodynamics. They do not depend on the path either. When you are actually 

changing the state of a thermodynamic system, you go through some complicated path. 

But the initial and final states are defined based on where you landed up. What we are 

saying here is something similar. 

 

There is some quantity here that...if the amount of work done on the charge which did not 

care how you got from point A to point B; only where you started and where you ended. 

Now, as it turns out, since we are doing electricity and magnetism, we are not so much 

interested on the total work done on the charge but we are interested in potential energy 

gained by the charge which is equal to minus of this quantity, because it is the total work 

done by the charge; this will give you kinetic energy. So, if you want potential energy, 

you have to take minus of that. So it gives me q Q over 4 pi epsilon naught 1 over r B 

minus 1 over r A. And typically when we are talking about point charges, we have a point 

charge Q and we want to use this formula, we will take the other point, starting point, 

very far away. If you take it very far away, then 1 over r A goes to zero. So you can say, 

this is equal to q Q over 4 pi epsilon naught 1 over r B.  

 

So, you have now got an expression for a state that depends only on the final location of 

the charge and it represents potential energy gained by the charge, when you come from 

very far away to that point. As before, this is potential energy. We would like to know 

potential energy per coulomb. So we define a special variable, a special field called 

electrostatic potential. The symbol we use is the Greek letter phi and the Greek letter phi 

is nothing but potential energy gained divided by q itself. That is the potential energy 

gained per coulomb and it is defined for a point charge source Q over 4 pi epsilon naught 

1 over r. 
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Let me recapitulate. The important thing about this potential function is precisely that it 

does not depend how you got to the point r. However you got to it, this potential function 

is the same. So, we have...we originally had electric field which was Q over 4 pi epsilon 

naught 1 over r cube r. But now, you have come to a different function phi. It is equal to 

minus integral to r from far away E dot d l which is equal to Q over 4 pi epsilon naught 1 

over r. This is Coulomb’s law and this is what we have just worked out. Now, there is a 

huge advantage to this function. We may have invented it but this is a vector, this is a 

scalar, which means that this quantity involves 3 separate numbers for every point; this 

quantity involves only 1 number. 

 

So, phi is much simpler than E. The other thing is phi represents something. phi 

represents potential energy of charge, potential energy per coulomb of charge. Now you 

worked all this out for a single charge Q but we know that any interesting problem is 

going to have many charges and in fact if you have a metal we do not even know where 

the charges are. So what use is this?  
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First things first. We know that electric field is equal to 1 over 4 pi epsilon zero integral 

rho of r prime d v prime divided by r minus r prime cubed and multiplied by r minus r 

prime. So, there is superposition working for us; for every little piece of rho d v prime, I 

can calculate potential, which means that the potential due to all these different pieces of 

charge phi of r must be equal to 1 over 4 pi epsilon naught integral rho of r prime d v 

prime divided by...  

 

Once again, potential is a much simpler function. Electric field involves a vector and it 

involves 1 over r cube times r. It is going as 1 over r square; potential just involves a 

simple 1 over r. It is a very very simple function and in a certain sense, this potential 

contains everything because if you knew this potential, then if you went to a nearby point 

and measured potential and took the difference, then it must be true that this is equal to E 

dot d r with a minus sign. It is just coming from the definition because this is integral 

from far away to r plus d r and this is integral from far away to r. And you know, if you 

take two integrals, you can take the difference by same r to r plus d r of E dot d l with the 

minus sign; and for very very small lengths of integral, it is nothing but the integrand 

multiplied by the difference of the limits. So, that is this. 

 



22 

 

So it means that if I know this potential function and I take the potential function at very 

nearby points, I have effectively got a feel for electric field because the difference 

between nearby points of potential is nothing but the electric field itself. Of course there 

is a d r in there but it is nothing but the electric field. 
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So, you have got a case where you have simplified the problem. We started with an 

electric field which was a complicated vector field and we have now devised a scalar 

field, much simpler field. It has got a physical meaning to it. It is potential energy of the 

charge and it does...it gives you the electric field, after all.  

 

I will continue next time.  


