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Good Morning. Last time we derived a couple of expressions for the magnetic field in 

different geometries. Today what I am going to is to connect up these calculations to a 

very important concept namely inductance. We cannot really formulize this concept of 

inductance till we reach faraday’s law. But I am going to introduce the definition and I 

will make it make sense once we have done stored magnetic energy. So, what have we 

done?  

 

(Refer Slide Time : 01:38) 

 

 

We looked at an irregular solenoid and we concluded that the magnetic field is constant 

inside and 0 outside. We did that by proving that the magnetic field is in the z direction 

and then if it is in the z direction, you can always draw Stoke’s loops and since there is 

only magnetic field here and here you have loop integral b dot d l is equal to b of r 1 
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minus b of r 2 times d l. But, there is no current entering. It is supposed to be equal to 

surface integral j dot d s which is 0. 

  

So, that must mean that the magnetic field is constant along this direction. Similarly we 

worked out the case for an irregular torus and we proved that the magnetic field is equal 

to mu naught n i over 2 pi r inside and 0 outside and the way we proved it was quite 

important. We proved it by talking about the vector potential a, and showing that if the 

vector potential a, has certain symmetries. In this case vector potential a, is not a function 

of z and because the currents are all in r theta.  

 

We said that a is equal to a r of r theta along the r direction plus a theta of r theta along 

the theta direction where r and theta are this is the r direction, this is the theta direction 

polar coordinates. If you assume just this much the rest follows. Similarly, here I had to 

work a little bit to show that the vector potential a, was in the r z plane. So it was a r as a 

function of r and z along the r direction plus a z a function of r and z in the z direction del 

del phi was equal to 0 and a phi was equal to 0.  

 

Using just that information I was able to prove this. These kinds of proofs are quite 

important. I mean after all the solenoid and the toroidal solenoid are perhaps the most 

important magnetic structures we have in electrical engineering. So, if we can derive 

expressions for them, then there must be some use for this vector potential, okay? So now 

we have got some expressions. Let us look at what those expressions are saying.  
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In the case of solenoid I am going to take a circular solenoid, there is no need now to go 

for irregular and other things. I have n turns per meter. I already know that b is along the 

z direction and it is equal to mu naught n I where I is the current per turn, n is the number 

of turns per meter. So, b z is in the z direction and in fact b z is constant within the 

solenoid. Now this is true for an infinite solenoid. For a finite solenoid there are always 

going to be n defects. So, if you had a solenoid that was only at length l z, what will 

happen is in the middle of the solenoid you will have uniform b but it will start diverging 

as you reach the end.  

 

So, what happens is actually a little bit of flux leaks out through the side coils towards the 

end. So, it is not true that b is totally along z and it is not true that the amount of b that is 

enclosed is constant. So it is an approximation for finite length solenoid but it is exact for 

an infinite length solenoid. Now I want to introduce a new concept which is I have this 

solenoid and the solenoid has a cross section. In this case a circular cross section. So, just 

as for displacement vector, I defined the amount of flux leaving a surface of course in 

that case I used close surfaces and I talked about this as the electric flux leaving a surface.  
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Similarly, I can talk about a magnetic flux leaving this surface. So, I can talk about 

surface integral b dot d s. It turns out to be an extremely important concept and it is called 

the magnetic flux usually denoted like this. In fact very often you would not even see the 

m below it just phi. So, this magnetic flux is the integral of b over a surface which 

surface. Well, it does not matter which surface because, supposing I have some loop and I 

connect it by a surface. I could also connect it by some other surface. So, one surface is 

along the plane the other surface is pulled out.  

 

So, I would get different answers perhaps but I would not because if I call this top surface 

say one and I call the bottom surface two, then I can do something. I can say the surface 

integral of one b dot d s minus the surface integral over surface two b dot d s. Now what 

is minus surface integral mean? It really means plus minus b dot d s. I can always take 

the minus inside which means here b is pointing upwards. There, I am taking the opposite 

sign. I am asking b to point downwards. In that case what does this mean? This is nothing 

but integral over the entire surface b normal d a because on this surface I am doing b dot 

d s.  

 

On the bottom surface, I am doing minus b dot d s. So, I am taking the total amount of b. 

That is trying to leave this volume so that is surface integral over the closed surface b d a. 

But we know Gauss’ law. The divergence theorem tells us this is nothing but volume 

integral over the enclosed volume some v divergence of b d v. This is just coming from 

the divergence theorem.  

 

Any vector field dot d a over a closed surface is equal to an integral over an enclosed 

volume divergence of the vector d v. But now I have a well-known result. I know that 

divergence of b is equal to zero everywhere. It is a fundamental statement and it came out 

of the fact that b is an integral of j cross r over r cubed. So, divergence b is zero which 

means this is zero. So, it says integral over surface one minus integral over surface 2 is 0 

for any pair of surfaces 1 and 2. But what does that mean?  
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It means integral over 1 b dot d s is equal to integral over 2 b dot d s for any surfaces 1 

and 2 that connect to the same closed curve. That is the only condition. That 1 and 2 must 

somehow connect to the same curve. Now note that this curve does not even have to be 

on a plane. I have a plane that is like a cucumber, right? I can draw a surface that looks 

like this and I can draw another surface that looks like this and the top surface and bottom 

surface will both give me the same answer which means, what this means is that talking 

about magnetic flux is meaningful and I think that is an important point.  

 

When we talked about electric field we defined a quantity phi which was minus integral 

from infinity to r e dot d l and we did not know whether this things was meaningful or 

not. We could only say it was meaningful because it did not depend on how we got from 

infinity to r. Once we knew that then we had a powerful new concept called the scalar 

potential or the electro static potential. Now, similarly here b is some vector field. It is a 

complicated field. But you find that if you integrate b on any surface that connects to a 

closed curve, no matter what that surface is you get the same answer which means that, 

this concept of phi magnetic is a good concept.  
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It does not depend on how I drew my surface, any surface will do. So, it is very 

analogous to talking about electro static potential. You should see these two as 

analogous. As you see these two as analogous then you can ask potential is stored in 

capacitors, right? I mean potential you have relation q equals c v and voltage is nothing 

but potential. So, there is a characteristic of potential that is coming into circuit devices.  

 

Similarly, the moment you define something that does not depend on the detailed shape 

of electromagnetic objects you can expect that will enter a line diagram. It is quite 

important here. So, pay attention. Supposing I draw a circuit and I wrote this and I said 

there is a capacitance c. If the behavior, of this object the relationship between current 

entering and the voltage was a very complex function of the shape of this object. If it 

depended where the current entered, if it depended on which part of the capacitor was 

where, then you would not be able to write a simple relation like q equals c v.  

 

It will become much more complicated, it would depend on the distribution of charge. It 

would depend on other things. Once I did that, it will no longer be useful in circuit 

theory. But we know ahead of time that capacitor is a very well defined object. It is 

defined by a scalar equation. So, all the vector details are hidden in c. 

  

And that comes out of the fact that actually you have certain linear relationships that 

define what is happening inside c and you have a scalar quantity, the potential that does 

not care about the path by which it is calculated. All these things go into making this 

possible. Similarly now we have a new scalar quantity. It is called magnetic flux. Now it 

is a scalar quantity that is a function of an entire loop. But, it does not depend on the 

surface that connects the loop and we can confidently expect that because it is such a 

simple idea here. There is another circuit device that is connected up with this scalar 

quantity and of course that is the inductance.  

 

Inductance is the connection between magnetic flux and the current through the coil just 

as in capacitors capacitance is the connection between the potential and the charge that is 

stored. So the stored charge and the used the current that is flowing through the coils are 
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the quantities that directly define the fields. The charge is what generates the field here. 

Current is what generates the field here. Associated with the charge, there is a concept 

called electrostatic potential. Associated with the current there is a quantity now which 

we have found which is magnetic flux. 

  

So, there is a big symmetry here and it is very important to appreciate it because every 

time you see a symmetry between electrostatics and magnetostatics. We should use it to 

simplify magnetostatics. We should not get confused and frightened by the fact that 

magnetostatics seems to use much bigger formulae. It is almost for point to point that is 

same as electrostatics. You just have to appreciate the fact that it is a same thing and then 

things become much simpler. I am going to now introduce what is the definition of 

inductance. But as I said this definition would not make sense till we get to faraday’s law.  

 

(Refer Slide Time : 18:30) 

 

 

So, we assume that there are many coils. They are all connected up. So, you have a 

current i. This current is also flowing the other coils. Since it is a very common 

arrangement you always work with coils in electrical engineering, so we have built the 

concept of inductance in the concept of inductance we have built into it the number of 

turns per meter. We could actually have defined inductance per turn and then generalize 
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it for a n turn system. But it is so common to have multi turn coils that we just built the 

number of turns per meter into the definition of inductance. So let us say we have n turns 

per meter. Now in each of these turns there is a current and that current is trying to create 

a magnetic field. So, if the current is going this way, the magnetic field is like this.  

 

Now the next turn is trying to produce its magnetic field. Third one is trying to produce 

its magnetic field. Fourth one is trying to produce its magnetic field and from this picture 

you can easily see if you can added them all up vectorially, you are basically going to 

have a magnetic field that goes like this which is what we derived last time. A uniform 

magnetic field inside the solenoid diverging magnetic field on entry and on exit, it 

converging on entry and diverging on exit. 

  

Now what is worth knowing is that when we derived it we found for a solenoid that the 

magnetic field in the interior of solenoid b z is equal to mu naught i times n. That is the 

magnetic field is stronger if you have multiple turns. But it is not the total number of 

turns in the solenoid that matters. It is the number of turns per meter per unit distance. So, 

we tightly wind this solenoid we get a strong magnetic field. A solenoid could have 400 

turns and the b field is not 400 times, not if the 400 turns are stretched over 10 metres. 

Then it is only 40 turns per meter. So, the magnetic field is only 40 times.  

 

So, this n is turns per meter and not total number of turns. Now the definition of flux you 

would imagine would be phi is equal to surface integral b z d a which is nothing but mu 

naught n i times a. Now we define the inductance as the relationship between phi and I, 

but not really between phi and i we say that this magnetic flux is seen not just by one coil 

but it is seen by n coils. So we define the inductance l as the flux that links n coils per 

unit current, as I said this concept of putting in the number of turns is more for 

convenience. You could have defined flux per coil and inductance per turn and then you 

would have worked out that there will be an n square factor coming into the answer. 

  

But because it is so common to have coils we have put the number of turns per meter into 

the definition of inductance itself. Now if you put back the definition of phi into this what 
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do we get. It is equal to n over i times mu naught n i times area. Since the flux is 

proportional to current if we divided by current the current has to go away. So, you are 

left with mu naught n square times the area. The inductance is proportional to the square 

of the number of turns per unit length that you wind around your solenoid. This is 

generally true. You will always see a n square. It is because the magnetic field you 

produce is higher because of the number of turns and you are linking n coils with that 

same magnetic field and therefore you get n twice or n square. You can work out the 

inductance due to many other geometries. 

  

(Refer Slide Time : 24:00) 

 

 

For example supposing we had our torus. Then I am going to choose a square cross 

section. That simplifies the maths. So, my inner radius to the center of symmetry is the 

distance a outer radius the distance b the height is l z. We worked out that if you take this 

solenoid then the magnetic field is purely in the phi direction. Therefore you can apply 

stoke’s theorem and say 2 pi r b phi equals mu naught i. But there are n turns. So, I put a 

n because when it goes round it is all these currents are coming out. So, the number of 

turns is the total number mu naught capital n i. Let me show it from above. You have 

your inner wall outer wall of your solenoid.  
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You are looking at magnetic field somewhere some radius. So, you take a loop like this. 

This loop has a length 2 pi r times b phi. Coming out of this inner wall are all these coils. 

So, the total number of turns not the turns per meter. The total number of turns is what is 

getting linked by this loop. So I have put a capital n and this capital n is equal to mu 

naught times 2 pi a n I; 2 pi a is the circumferential length around the inner wall and n is 

the number of turns at the inner wall per meter okay. So, what do I get? I get b phi is 

equal to mu naught n i times a over r. The two pi will cancel out. If we kept it in terms of 

capital n, it would have been mu naught capital n i over 2 pi r, both are okay. You have to 

decide which form of the definition you want.   

 

Now this is the magnetic field. We need the magnetic flux. Now it is important here to 

understand what surface we are talking about. The current is flowing like this and then it 

is coming back to the next coil and so on. So, the current is flowing in the r z plane. The 

magnetic field is in the phi direction. So, the surface we are talking about is the surface 

that links this coil. So, phi magnetic is equal to surface integral of z going from say zero 

to l z r going from a to b d r d z of b phi which is mu naught n i times a over r.  

 

The integrals are trivial. It gives you mu naught n i times a times the z integral the 

integrant is not dependent on z. So I can just integrate it trivially l z. The integral in r has 

a one over r in it. The integral of one over r is log. So, the answer becomes l n b over a. 

That is because integral a to b d r over r is equal to l n r between the limits a and b which 

is ln b minus ln a or ln of b over a, all right? So I have got l n of b over a. So, this is the 

flux per turn. So inductance is now going to be n times this phi divided by i or it is equal 

to mu naught n square times a l z l n b over a.  

 

Now it depends very much on how you define your n because I have defined my n as 

number of turns per unit-, per meter on the inner wall. Since the dimensions of such a 

system is varying as you in r i could have defined my n as number of turns per meter on 

the outer wall. Then I would have got different expression. But whatever expression I 

use, I will always have n square once again. Inductance depends on the square of the 

turns per meter. Let us take a third example a coaxial cable.  
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I have my inner radius of my wire is a outer radius is b. So the current goes let us say up i 

z in the inner wire and comes back down on the outer wire because there is a symmetry I 

can again calculate b. Stoke’s theorem tells me 2 pi r b. Since the current is in the z 

direction b is in the phi direction is equal to nu naught i. There is only one turn. This is 

not a case with n turns, a single turn single wire is going up and coming back bringing 

everything back.  

 

So, this is the total current single coil. So, b phi is equal to mu naught i over 2 pi r. What 

is the flux? The flux therefore is the cross section. I have to take flux is what intersects 

this cross section because this is a phi direction b phi. So, the cross section is in r and z. 

So, phi magnetic is equal to integral say 0 to l z integral a to b mu naught i over 2 pi r d r 

d z. So, same integration so we get mu naught i over 2 pi times l z times ln b over a. So, 

this is the magnetic flux. It is proportional current.  

 

So, I can define an inductance. Inductance I define will be phi over a phi over i because 

there is no n, n is one. So, I get mu naught over 2 pi l z ln b over a. So, the inductance in 

this example is proportional to the length. That is not surprising because the more length 
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of wire I take the greater amount of flux I am linking and therefore the more inductance, 

because inductance is nothing but flux per unit current. Okay, we will come back to the 

concept of inductance later on. There is no point in going further till we define faraday’s 

law. I want to turn to another topic right away which is the topic of matching conditions 

for magnetic field when you have a boundary.  

 

(Refer Slide Time : 33:59) 

 

 

In electrostatics we had developer matching conditions. What were the conditions we 

had? We had that normal component of d is continuous and tangential component of e is 

continuous. We proved this using Gauss’ law and stoke’s law. Gauss’ law and stoke’s 

theorem namely we had some surface. There was let us say epsilon one on one side there 

was epsilon two on the other side. I will put an imaginary cylinder cylinder that was very, 

very thin. So even this picture is not very correct, a better picture would be like this. It is 

a small cylinder but its surface area at the top and the bottom is much larger than its side 

area.  

 

Now I try to do integral d dot d s. There is no free charge enclosed. So, I got zero and 

using that I came up with continuity of normal component of d and for continuity of 

tangential component of e. I use stoke’s theorem and I used curl of e is equal to 0. We 
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have to do the same thing now. We have to use corresponding equations in magnetic 

field. Well, we do know that volume integral b dot d s is equal to 0 always. This is 

fundamental because divergence b is identically 0. Using this condition which is the same 

as this we were able to say normal component of d is continuous, so apply surface 

integral b dot d s equals zero to this cylinder. What will happen? Your magnetic field is 

doing something. The sideways fields will contribute to the sloping sides. But we are 

taking a cylinder so flat the sloping sides have almost no area.  

 

So, all the contribution is coming from the top and the bottom. So I get this side is one 

and this side is 2. So I get surface integral I am assuming the directions the way they have 

drawn. So, minus surface integral b dot d s along surface one plus b dot d s on surface on 

surface two is equal to zero. Because in one case it is entering, the other case it is leaving. 

What does that mean? It means surface integral over surface 1 b dot d s equals surface 

integral on 2 b dot d s. But this can be written as integral over 1 b normal d a is equal to 

integral over 2 b normal d a, areas are the same. It is a small enough cylinder b is uniform 

over that surface.  

 

(Refer Slide Time : 38:11) 
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So, this finally gives me my result which is that b normal one times the area is equal to b 

normal two times the area or b normal is continuous. It is the exact same derivation as 

what we did for displacement vector. But you will see that in displacement vector we had 

to make an additional approximation or additional assumption which was there is no free 

charge on the surface. Here this is absolutely true. It does not depend on whether there is 

current or charge on that surface. It is always true that divergence b is 0. It is always true 

that b normal is continuous at any surface. Now what about the other condition?  

 

(Refer Slide Time : 39:12) 

 

 

Well we used curl of e continuous to prove that e is continuous. Let us use curl of h. Curl 

of h is equal to j ampere’s law which means that I can now look at this surface. Hence 

assume that there is no free charge free current. This is the equivalent of what I did for d? 

Supposing this surface is only a surface between dielectric. So, there is no free current 

there. It is equal to 0. If curl of h is 0, then I can use the same argument. I used for 

proving e is continuous. So, I take a long loop so that the vertical sides are negligible in 

length. Again I have my field. This is h and the field does something in the other side. So, 

I call this side one I call that side 2 and I go round this loop in some direction. Then I 

have this statement is equivalent to saying loop integral h dot d l is equal to 0. That is, 
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integral on side 1 h dot d l plus integral plus integral on side. 2 h dot d l is equal to 0. But 

if I do integral on side one h dot d l that is h 1 tangential times d l.  

 

On side two it is minus h 2 tangential same d l is equal to 0. The minus sign came 

because I am integrating in the reverse direction. What does this mean? It means that h 

one tangential is equal to h 2 tangential or tangential component of h is continuous if no 

free current is present. Now why did I use h here? Why could not I have used b? Let us 

try to use and let us see what goes wrong. So, I am going to follow the same steps and see 

what goes wrong when I use b. I will use curl of b is equal to mu j.  

  

Now when I do this, there is a problem. Let me show you what the problem is, I do a loop 

integral. A loop integral b dot d l is equal to surface integral mu j dot d s. Now j free may 

be zero but any time I have two magnetically sensitive materials the different 

permeability mu 1 and mu 2. What is going to happen is at the surface boundary between 

these two, there is going to a surface current. The surface current represents the fact that 

the amount of induced spinning in this material and induced spinning on that material are 

different. So, on this surface alone there will be a large surface current which means that 

mu j cannot be set to 0 or if you like I should not call it mu j i should call it mu naught j 

total. 

  

So then it will be mu naught j total which can then be written as surface integral mu 

naught j bound. So it is this term j bound which is not zero. I do not have any free current 

on this surface. It is a non-conductor. But I do have induced current on this surface and 

this induced current is going to cause a contribution and because it is going to give a 

contribution, it is not true that tangential component of b is continuous. In fact if 

tangential component of h is continuous what does it imply. 
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It implies that tangential component of b is not continuous because h 1 tangential is equal 

to h 2 tangential but h is nothing but b over mu. So b one tangential over mu one is equal 

to b 2 tangential over mu 2 or b 1 tangential is equal to mu one over mu 2 b 2 tangential. 

So, there is a jump in b tangential, b normal is continuous, b tangential is not continuous 

but h tangential is continuous. We will use all these matching conditions little later when 

we come to dealing with magnetic circuits. 

  

Talking about what happens when you enter a magnetic material and when you leave it. 

Now I want to just touch upon one important topic in the rest of this lecture and that is 

the topic of what happens to free charges when they are in the presence of electric and 

magnetic fields. Up to now what have we done? We have talked about charges in the 

presence of electric fields and currents in the magnetic fields. But what happens if I put a 

free charge and apply electric and magnetic fields.  
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I know that my force equation according to newton is m d v d t the rate of change of 

momentum is the applied force. Now what is this applied force? It is the electric force q e 

plus the magnetic force which is q v cross b, q v is like j. So this is nothing but j cross b 

and this if it is an electron or a piece of the fluid also suffers from the viscous forces. So, 

you can put a drag minus drag minus m nu v. 

  

I am talking about a particle. So this particle let us say it is a you can doing the millikan 

oil drop experiment or you can be talking about the hall effect. Any of these will satisfy 

an equation similar to this. The rate of change of momentum is equal to the applied 

electric force plus the applied magnetic force minus the drag on the particle. The drag 

here is modeled as a nice simple model where I am assuming the frictional the coefficient 

of friction is a constant. Now I am looking only from steady state problems. I do not want 

to look for time dependent solutions because that is a more complicated situation. So I am 

going to say steady state the left hand side is 0.  

 

So, I am looking for constant velocity solutions. Let us look at some simple solutions. 

Supposing I say b is 0. We have already done this problem. What does it give us? It gives 

us q e minus m nu v is equal to 0 or taking m nu v to the other side I can solve for v. V is 
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equal to q over m e divided by the coefficient of friction. So q over m, e is the 

acceleration and acceleration is balanced by a slowing down friction and when these two 

forces when these two accelerations balance that gives us the steady velocity. 

  

This is nothing but ohm’s law. Because inside a material what is happening is you have a 

steady electric field and you have a steady frictional force. Of course you have there is 

also a statistical component to it because each electron that is moving is moving with a 

different velocity and it is only on average this equation is satisfied. But, if you asked 

what is that average velocity that the electron has it is given by the balance between 

acceleration due to electric field and drag due to collisions. So, this is our ohm’s law 

which we are very familiar with.  

 

Now what happens if I have a magnetic field present as well. Well my equation becomes 

q e plus q v cross b minus m nu v is equal to 0. Now I am going to simplify this problem 

by assuming certain directions. This is the x y z direction. I will assume the magnetic 

field is along z. I will assume the electric field is along x and I want to solve for the 

velocity. So, the stationary electron or the stationary particle feels only the electric field. 

But as it starts moving it feels the magnetic field through the v cross b force. So let us try 

and imagine what will happen if I start with a particle at rest let us say there.  

 

The first thing it will do it will start falling in the x direction because there is an electric 

field present. It needs to catch up till its steady state velocity is reached. But even as it 

starts moving there is now a v cross b force and the v cross b force is in this direction 

because of the v cross b force now the particle starts moving in the minus y direction as 

well. So it starts bending over. But when it starts moving in the y direction once it has a v 

y then it has a minus force in the x direction as well. Because v y cross b z is in the x 

direction. 

  

So, there is a force in the x as well as a force in the y and these two forces together. When 

they are both present is what will give a final balance of forces in this equation. So 
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velocity is equal to v x x plus v y y. The electric field is only in the x direction. The 

magnetic field is only in the z direction. Let us see where it gets us. 

  

(Refer Slide Time : 52:05) 

 

 

So I have q e x along x plus q v x b z x cross z is minus y plus q v y b z y cross z is plus 

x. So the v cross b term gives me two terms. The v x cross b gives me a minus y direction 

force. The v y cross b gives me a plus x direction force. Then minus m nu v x along x 

minus m nu v y along y. The whole thing is equal to 0. So, these are two equations 

because there is an equation connecting all the components along x and an equation 

connecting all the components along y. Let me write them down, q e x plus q v y b z 

minus m nu v x is equal to zero and minus q v x b z minus m nu v y is also equal to zero. 

So, this is the x direction force balance this is the y direction force balance.  

 

Both of them must hold and I have two unknowns. I do not know v x, I do not know v y, 

two equations two unknowns. Let us solve this equation first. It allows me to solve for v 

y in terms of v x or the other way round, v y is equal to minus q b z over m nu v x. I just 

take the m nu to the denominator. Now I have a very important quantity called the gyro 

frequency. This gyro frequency is the speed at which particles go round and round the 

magnetic field. We will come back to this later, right? Now, just note that this is a well-
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known frequency, so I can write this as minus gyro frequency omega over nu v x. 

Similarly I can take this equation and what do I get?  

  

I get that I will divide through mu m nu q e x over m divided by nu plus q b over m. So 

omega over nu v y minus v x is equal to 0. But I already know v y in terms of v x. So I 

can substitute here. So I get q e x over m divided by nu minus omega square over nu 

square v x minus v x is equal to 0 or if I solve I get the answer v x is equal to q e x over 

m divided by nu. This is the force balance of forces that in the absence of magnetic field 

would give me a stationary velocity but it is multiplied by one over one plus omega 

square over nu square.  

 

So the magnetic field is 0. This is the drift terminal velocity. If the magnetic field is very 

strong, then what happens is it is the magnetic field that acts as a friction. It is not the 

collisions that act as a friction and the x velocity basically becomes 0. What does v y look 

like? We know that v y is minus capital omega over nu v x. So it becomes q e x over m 

over nu omega over nu with a minus sign divided by 1 plus omega square over nu square. 

So v y is much larger than v x when magnetic field is strong.  

 

So it is in a case of strong magnetic field what happens is there is nu square that cancels 

out and it is only magnetic field that gives me drift. Let me work out that case, v y is 

equal to q e over m times the nu square has cancelled out omega over omega square plus 

nu square. This is called the e cross b drift. This e cross b drift is present in any magnetic 

field with or without friction. This drift is really a modified ohm’s law. It is a ohm’s law 

in the presence of magnetic field and it is from effect like this that you get things like hall 

effect and image de power generation and other effects alike that are quite interesting to 

electrical engineers. 

  

 


