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Lecture No # 05 

Multivariate Gaussian Density 

 

Ok. So, today we will be discussing Gaussian density, but not just for one variable for many 

real continuous random variables together. So, that will be called joint, the jointly 

Gaussian. Gaussian is sometimes also called normal, jointly Gaussian random variables. 

This jointly is sometimes also called multivariate, there are different names. So, here we 

are given capital N, real continuous random variables say 𝑥1, 𝑥2, … 𝑥𝑁. 

 

They are jointly Gaussian. So, every experiment I will observe them together. They may 

have a relation between them one can be temperature, another can be humidity, another 

can be anything. They will be called jointly Gaussian if they are joint probability density. 

 

We have discussed what is joint probability density for two variables 𝑋 𝑌 then for three 

variables. So, in general the joint probability density if it takes a particular formula form, 

then it will be called that they will be called jointly Gaussian. Before that let us see, suppose 

x is the vector that is all the random variables in stack, they are put in a stack in a vector. 

We have already discussed it yesterday towards the end, same thing I am saying, and a 

mean vector is a vector of 𝜇1 is a mean of expected value of 𝑥1, 𝜇2 expected value of 𝑥2 𝜇𝑁 

then we know we can take the deviation the increment vector 𝑥 − 𝜇, that is every random 

variable, the incremental value it takes around its mean 𝑥1 − 𝜇1. So, sometimes can be 

positive, sometimes can be negative and for all other variables. 



𝑥 =  
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.
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So, they are in a stack 𝑥1 − 𝜇1, 𝑥2 − 𝜇2, 𝑥𝑁 − 𝜇𝑁 that is what this is. We have seen that 

this vector if I take expected value of this is a column vector and its transpose, we have 

seen in the last class that is the covariance matrix.  

𝐶𝑋𝑋 = 𝐸[(𝑥 − 𝜇)(𝑥 − 𝜇)𝑡] 

See maybe you can say 𝑥, 𝑥 because 1 x minus mu comes here, another x minus mu row 

vector comes here, you multiply 1 element here 1 element here. So, this has 𝑥, this has 𝑥. 

So, 2 elements of 𝑥 get multiplied, maybe 𝑥1 − 𝜇1, 𝑥3 − 𝜇2. 

 

So, 𝑥1𝑥3 terms come that is why we indicate it by 2𝑥. This is second order thing; 2 random 

variables are multiplied. It is called the covariance matrix for this random vector. It is a 

random vector; everybody is a random variable and they are jointly random. So, this we 

discussed last time mu is the mean alright, then this random variable 𝑥1, … 𝑥𝑁: jointly 

Gaussian, if they are probably joint probability density that is p capital X1 capital X2 dot 

dot dot capital Xn and the values x1 x2 dot dot dot dot xn that takes this form. 

𝑃𝑋1,𝑋2,…,𝑋𝑁
(𝑥1, 𝑥2, … 𝑥𝑁) 

 

First 1 by 2 pi n by 2 and then determinant of this matrix 𝐶𝑋𝑋 its square root, positive square 

root into e to the power into. I do not have space here. So, I am writing here. e to the power 

minus half this vector this difference vector x minus mu. So, you are choosing x1 x2 xn. 



 

 So, you are putting them in a vector subtracting the mean vector from them that is x minus, 

you are putting those values. So, for those x1 x2 xn. So, those values of x1 x2 xn you have 

to put here in the x vector, corresponding mu values mu 1 mu 2 mu n in this vector the 

column vector. So, in the formula they come as row, column transpose is row, then 𝐶𝑋𝑋 

and I am assuming 𝐶𝑋𝑋  matrix is invertible that is inverse exists. Not all matrices are 

invertible, but we are assuming assumed when we can assume that that we will discuss 

later assumed to be invertible. 

𝑃𝑋1,𝑋2,…,𝑋𝑁
(𝑥1, 𝑥2, … 𝑥𝑁) =  

1

(2𝜋)
𝑁
2√det (𝐶𝑋𝑋)

 𝑒
−1
2

(𝑥− 𝜇)
𝑡

𝐶𝑋𝑋
−1(𝑥 − 𝜇) 

 

 

 That is 𝐶𝑋𝑋 inverse exists. So, again 𝐶𝑋𝑋 was a matrix is inverse is a matrix, matrix then 

again, the same vector x minus mu. Now, this is a column vector, this is a matrix, a matrix 

times a column vector is a column vector. So, this is a column vector, this is a row vector. 

So, row into column is a scalar. 

 

 So, e to the power minus half into some scalar. So, it is a scalar, 2 pi to the power N by 2 

scalars, determined is a scalar. Because probability cannot be a vector, probability is a 

scalar. So, whole thing is a scalar. So, in the case of jointly Gaussian random variables, this 

should be the joint probability density. 

 

If capital N is 1 there is only one random variable, then you will see this boils down to or 

well-known Gaussian density function for one variable. That is if you take N to be 1 only 

then obviously, 2 pi to the power N by 2, N is 1. So, you have got I am writing here N equal 

to 1, you see 1 by 2 pi to the power 1 by 2. So, 1 by root 2 pi then 𝐶𝑋𝑋, 𝐶𝑋𝑋 x has only one 

element x1 and mu is mu 1 whole vector. So, 𝐶𝑋𝑋 means what it was a column vector 



earlier into row vector, but now column has only one element x1 minus mu 1, 

corresponding row also has only one element x1 minus mu 1. 

 

So, it is nothing but x1 minus mu 1 whole square, expected value of that and that is called 

the variance. sigma x square sigma x1 square and now square root. So, it will be just sigma 

x1, x1 is a variable, sigma x1. Then e to the power minus half again x minus mu transpose 

has only one value x1 minus mu 1. Matrix is a scalar now that was as we told the variance 

cxx is a variance sigma x square. 

 

 So, inverse of that is 1 by sigma x square. So, you have got minus half, So, 2 I bring here, 

sigma x square I bring here, the scalar, and x1 minus mu 1 again x1 minus mu 1 only one 

element one element.  

= 
1

√2𝜋 𝐶𝑋𝑋

 𝑒
− (𝑥1− 𝜇1)2

2𝜎𝑥
2

 

So, this is what you have for the normal ordinary Gaussian density. we all know general 

form of the Gaussian density function for one variable, but this is more general. If this 

happens then they are of course, they are real and continuous in if they are complex then 

the formula will be more general, I mean more modified that we will not consider in this 

course. 

 

If you are interested you can consult books. Now, we will see a very interesting thing. 

Earlier I had said that if a set of random variables they are statistically independent. That 

is if the joint density is product of individual marginal densities, then they are also 

uncorrelated. Their covariance is I mean, between any two-element covariance is 0, 

between any two elements. 

 

Covariance between any two element 0 means what will be this matrix it will be a diagonal 

matrix because if you take ith element, in the previous class we have seen if you take ith 



element and jth element, ith comma jth element that will be xi minus mu i times xj minus 

mu j, product and their expectation which is a correlation covariance between xi and xj. If 

i and j are not same then if they are uncorrelated, this correlation is 0 which means if i and 

j are not same that is I am not considering diagonal entries because for diagonal entries 

same i same j, 1 1, 2 2, 3 3, 4 4, but if that does not happen then other elements are 0. So, 

for a if the variables are uncorrelated then the covariance matrix is a diagonal matrix.  

(Refer Slide Time: 11:18) 

 

 

Ok, that we have seen, let me again elaborate this. We have seen this I did in the last class 

though. 𝐶𝑋𝑋 was alright.  

𝐶𝑋𝑋 = 𝐸[(𝑥 − 𝜇)(𝑥 − 𝜇)𝑡] 

So, this is a vector the column vector, this is a row vector. So, multiply you get a matrix. i 

comma jth element of this matrix 𝐶𝑋𝑋 i comma j, this is a symmetric matrix that we have 

seen at that time only I showed, i comma jth element will be what? ith ith guy ith element 

of this vector and jth element of this row vector their product and expectation. So, E with 

respect to xi xj only they matter here in that product.  



[𝐶𝑋𝑋]𝑖𝑗 = 𝐸𝑋𝑖𝑋𝑗
 [(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗)] 

So, xi minus mu i and xj minus mu j and i and j they are not same, they are two different 

random variables. 

= 𝑟𝑋𝑖𝑋𝑗
 

 

 So, you are taking increment of this around the mean, the increment of this around its 

mean and multiplying and expecting. So, that is correlation 𝑟𝑋𝑖𝑋𝑗
. So, if xi xj are 

uncorrelated this will be 0 that means, as long as then i and j i comma jth element and i and 

j are not same because they are different random variables then only, I can talk of their 

correlation.  

[𝐶𝑋𝑋]𝑖𝑗 = 0; 𝑖 ≠ 𝑗 

If i and j are not same and they are uncorrelated then that element is 0 that is i comma jth 

element is 0 if i and j are not same. If i and j are same it will be xi minus mu i, again xi 

minus mu i because i and j are same. 

 

 So, xi minus mu i whole square expected value which is variance. So, i comma ith element 

which is ith diagonal element will be sigma xi square variance of the ith element xi. So, 

diagonal element will be the variances, but on off diagonal elements will be 0 when the 

elements are uncorrelated. Now, I had told earlier that if a set of elements are statistically 

independent, we can show they are uncorrelated that is a correlation between every two 

elements there, covariance between every two elements there will be 0. But the converse 

is not in general true that is if a number of variables they are given to be uncorrelated that 

is covariance between any two is 0. 

 

 It does not mean in general that they are statistically independent that is overall joint 

density will be a product of individual marginal densities, except in the case of jointly 

Gaussian random variables then one means the other and vice versa both are equivalent 



that is what we will see here. Now, suppose that is suppose we are given the fact that x1 to 

xn are uncorrelated, meaning 𝐶𝑋𝑋 i comma j 0, if as I told here if i not equal to j, and 𝐶𝑋𝑋 

ith diagonal into i comma i would be the variance, sigma xi square, variance of xi fine.  

[𝐶𝑋𝑋]𝑖,𝑖 = 𝜎𝑋𝑖

2 

So, suppose this is given and of course, they are jointly Gaussian then what happens 

determinant, number 1, determinant of 𝐶𝑋𝑋 , now 𝐶𝑋𝑋  is a diagonal matrix, all other 

elements are 0 only, diagonal elements are 𝜎𝑋1
2, 𝜎𝑋2

2, 𝜎𝑋2
2 dot dot dot their product. So, 

determinant is 𝜎𝑋1
2, 𝜎𝑋2

2 all right.  

det[𝐶𝑋𝑋] =  𝜎𝑋1
2, 𝜎𝑋2

2, … 𝜎𝑋𝑁
2 

So, in that Gaussian formula p x1 x2 dot dot dot xn we remember x1 x2 dot dot dot xn, we 

had 1 by root 1 by 2 pi whole to the power N by 2. 

 

 ok, and then in the denominator had positive square root of the determinant. So, if you 

take positive square root, it will become 𝜎𝑋1
, 𝜎𝑋2

, … 𝜎𝑋𝑁
 like that. So, what I do the whole 

probability density function I write as a product of some terms, one term, similar terms, 

one is just root 2 pi, but I had 2 pi to the power N by 2. So, I should have 1 by root 2 pi, 

again 1 by root 2 pi, again 1 by root 2 pi dot dot dot capital n times. So, I will have maybe 

1 by root 2 pi here dot dot dot lastly again another 1 by root 2 pi capital N number. 

 

 Then 𝜎𝑋1
, 𝜎𝑋2

, … 𝜎𝑋𝑁
  there is I am taking positive square root this product. So, I take 𝜎𝑋1

 

here, I take 𝜎𝑋2
 here, I take 𝜎𝑋𝑁

 here. So, you multiply the denominators you get back what 

we had earlier then e to the power is something that we have to see. what we had, e to the 

power, this is where I do the calculation, we had e to the power minus half 𝐶𝑋𝑋 inverse x 

minus mu. Now, cxx inverse means what, 𝐶𝑋𝑋 is a diagonal matrix, all diagonal entries are 

positive because they are variances. 

 

 So, inverse means it will be again diagonal matrix, but it will be a sigma 1 by sigma x1 



square dot dot dot 1 by sigma xn square and 0 on this side 0 on this side this is cxx inverse 

this matrix. And then you have x1 minus mu 1 top guy then x is x2 minus mu 2 dot dot xn 

minus mu n and of course, this term. So, when you multiply this with this, the diagonal 

matrix, So, just this multiplied by this, this multiplied by the next one, this multiplied by 

this. So, you get a row vector same, but they are scaled this is multiplied by this this is 

multiplied by like that with that if I multiply x1 minus mu 1 dot dot dot xn minus mu n. 

So, this after this product if I do the multiplication, you will have x1 minus mu 1 here and 

here whole square divided by this plus really plus because a row vector and this matrix 

times this a column vector. 

 

 So, row into column means term by term multiply and add plus. So, x1 minus mu 1 into 

x1 minus mu 1 by sigma x square x1 square plus x2 minus mu 2 here also. So, x2 minus 

mu 2 whole square by sigma x2 square plus dot dot dot dot. So, e to the power some terms 

which are summed that mean, I can separate them out while e to the power minus half is 

common one term will be just x1 minus mu 1 whole square by this another will be dot dot 

dot another will be you can just multiply this exponential.  

𝑃𝑋1,𝑋2,…𝑋𝑁
(𝑋1, 𝑋2, …𝑋𝑁)

=  
1

√2𝜋𝜎𝑥1

𝑒
−1
2

 
(𝑥1− 𝜇1)2

𝜎𝑥1
2 1

√2𝜋𝜎𝑥2

𝑒
−1
2

 
(𝑥2− 𝜇2)2

𝜎𝑥2
2

…
1

√2𝜋𝜎𝑥𝑁

𝑒

−1
2

 
(𝑥𝑁− 𝜇𝑁)2

𝜎𝑥𝑁
2

 

So, they will add up the exponent’s powers will get add up I will get that, but this is what 

this is the Gaussian density of the single random variable x1. 

 

 This is the Gaussian probability density of a single random variable x2 when they are 

jointly Gaussian, they are individually Gaussian also ok. There is a meaning I forgot to tell 

you if they are jointly Gaussian, they are individually Gaussian also.  

= 𝑃𝑋1
(𝑥1)𝑃𝑋2

(𝑥2)…𝑃𝑋𝑁
(𝑥𝑁) 

So, that means, this is nothing, but the probability density of this guy capital X1, this is 

nothing, but probability density of this guy dot dot dot is nothing, but probability density 



of xn. So, you see now in this case overall joint density is a product of the individual 

marginal densities. 

 

 So, they are statistically independent. So, in the Gaussian case if you are giving the 

variables to be uncorrelated then they are statistically independent also. converse is always 

true, but this is not always true, this is happening in the case of Gaussian. I mean in it does 

not happen in the case of other well-known probability densities, but here all right.  

(Refer Slide Time: 21:22) 

 

This is one important thing; another thing is complex random variables. All right complex 

random variables, here, I will say Z is a complex random variable if there are two real 

variables, two real continuous random variables capital X and Y. 

𝑍 = 𝑋 + 𝑗 𝑌 

 

 So, I conducted experiment, I observed two real valued continuous valued random 

variables, say capital X and Y and I take their values and write in this form a real variable 

I call, a complex variable Z, then obviously, Z is also random, but it is complex, then Z 



will be called a complex random variable, it has got two real random variables. So, 

therefore, even though Z is a single random variable it has actually two. So, I should have 

one X is capital X capital Y. So, Z will be, maybe if you take this to be small x and this to 

be small y. So, this point is Z small z, as small x plus small j y, this point. 

𝑍 = 𝑋 + 𝑗𝑌 

 And then if I go by d x and this is by d y then this is, you understand one thing d z will be 

d x plus j d y right. So, d x plus j d y. So, this point is nothing, but small z plus d z because 

x and d z means d x. So, x plus d x and take j common j here and in d z and j here. So, j 

into y plus d y here, y plus d y is this much and x plus d x is this much. 

 

 So, x plus d x plus j times y plus d y this is d z. So, d z is d x plus j d y, d x plus j d y and 

originally z at the two phasors. So, they basically x plus j y and it is d x plus j d z. So, x 

plus d x, z plus d z and j common y plus d y to this point.  

𝑑𝑧 = 𝑑𝑥 + 𝑗𝑑𝑦 

That means, probability of capital Z lying between small z and z plus d z is equivalent to 

what will happen that is capital Z will lie between these two this means it will lie within 

this box. 

 

 It will fall anywhere in this box there is a meaning of this. That means, the same as 

probability of capital X lying between here to here simultaneously with capital Y lying 

between these which we know is nothing, but p x y joint density small x small y d x d y. 

≡ 𝑝𝑟𝑜𝑏 (𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥, 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦) ≡ 𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 

 So, when expressed in terms of x y the real and individual component real and imaginary 

components then their joint density that will be same as the probability of capital Z falling 

here. Event is same capital Z lying here means capital X lying between here-to-here capital 

Y lying between here to here. So, the two things are two events are same capital Z falling 

in the box is same as capital X lying from here to here and capital Y lying from here to 

here. 



 

 So, this probability and this probability they are same all right. Now, given a function 

which could be complex or real 𝑓(𝑍) then it takes z, it can give you a real number or it can 

give you a complex number, does not matter 𝑓(𝑍), every time you find a z there is some x 

and y, you put that value x plus j y here and get a value. Since that is random this function 

also takes value randomly. So, what is the expectation e z 𝑓(𝑍), it is same as if you write 

working in terms of z, if you write it as x plus j y then what is the meaning of this e z? there 

is 𝑓(𝑍)  taking a value from with the I mean when capital Z lies falls anywhere in the box 

since the widths are infinitely small we assume the value of 𝑓(𝑍)  does not change it will 

have the same value as here at this small z or at this value at this pair ok, but chance of that 

I mean it will not always happen. 

𝐸𝑍[𝑓(𝑍)] =  ∬𝑓(𝑋 + 𝑗𝑌)𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 

= 𝐸𝑋𝑌[𝑓(𝑋 + 𝑗𝑌)] 

 

 So, I have to multiply it by the chance. Chance means you have to multiply this f of z value 

that is f of this value by the probability of capital Z occurring here or equivalently this 

capital X occurring capital X Y occurring in this box. So, that is I have to when I express 

z in terms of x y, I have to multiply this by the joint density. And then average ok, multiply 

everywhere and take average then as we have done many times in the past weighted 

average. So, this to be divided by summation of the weights. weights are this part, but their 

average their integral is 1, certainty probability of certainty is 1. 

 

 So, you get this which is nothing, but e x y of this function f now you write in terms of x 

y x plus j y all right. Then one thing e z suppose this is given and I suddenly and f of z is a 

complex function. So, it takes z as argument and gives you a complex number f of z. Now 

instead of f of z I take the conjugate that is whatever value f of z takes I take a complex 

conjugate of that. So, then it becomes a function f star z f star z what will happen to that. 



𝐸𝑍[𝑓∗(𝑍)] =  ∬𝑓∗(𝑋 + 𝑗𝑌)𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦 

 

 So, again just same thing I have to do, but instead of f it will be f star small x plus these 

are small within the integral that the variables of integral. So, now you see probability 

density is real is never complex, d x d y real and this is star. So, I can as well take the star 

out I mean this product I can take put the star outside, the star of a product means star will 

be put on everybody, but they are real. So, no change. So, this product and star and then 

integral is a summation. 

= [∬ 𝑓(𝑥 + 𝑗𝑦)𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦]∗ 

= [𝐸𝑍[𝑓(𝑍)]]∗ 

 

 So, summation of complex quantities with the conjugate you will get the same thing if you 

first sum and then conjugate that is z 1 star plus z 2 star that is first conjugate z 1 star z 2 

star then add that is integral you will have the same thing if you do first addition z 1 plus z 

2 then star that is z 1 star plus z 2 star we all know is z 1 plus z 2 star first add. So, first you 

integrate and then star that is first you integrate and this product but this is what I have 

here. So, that means, this will be nothing, but E z of the original function f z and then star. 

So, if you are taking f star z and then expectation value with respect to z what you have to 

do you have to first take the expectation value of the original f z no star and then put star 

on that and implication of that is suppose f z is z. So, that means, E z f z star is z star and z 

is suppose mu plus sorry 1 minute z is suppose x plus j y, E z z star will be what first you 

have to take E z of z and then star E z of z means expected value of this plus j times 

expected value of this. 

𝑓(𝑍) = 𝑍 = 𝑋 + 𝑗𝑌 

𝐸𝑍[𝑍∗] = [𝐸𝑍[𝑍]]∗ 

= [𝜇𝑋 + 𝑗𝜇𝑌]∗ 



= 𝜇𝑥 − 𝑗 𝜇𝑦 

 

 So, that was mu x it was mu y expected value. So, mu x plus this is mu x plus j mu y star 

which is same as mu x minus j mu y. So, this is very important if you have z and you are 

taking expectation of z star which is suppose z it will be original expected value and then 

conjugate.  

(Refer Slide Time: 32:08) 

 

 

So, mu x minus j mu y. So, I stop here and we will build up on these complex random 

variables and in particular we will consider complex covariance and complex covariance 

matrices in the next class. Thank you very much. 


