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Lecture No # 04 

Statistical Impedance, Covariance Matrices 

So, we start from where we ended last time. Suppose, suppose there are two jointly random 

variables ok. So, this part is 𝑥 and this is 𝑑𝑥, this is 𝑦 and this is 𝑑𝑦. We have seen this 

thing the meaning of this we know y by x. It means when we constraint capital 𝑋 to lie 

from here to here under that condition, under that constraint, what is the probability of 

capital 𝑌 lying from here to here? So, whether here or here or here, does not matter that 

probability. Now, suppose capital 𝑋 and 𝑌 are such there is absolutely no relation between 

them, as I told you, one could be temperature capital 𝑋 maybe another one is, another one 

is say maybe rupee value of dollar, So, absolutely no relation. 

 

 So, under such cases if physically 𝑌 does not depend on 𝑋 at all. So, it does not matter 

whether I constraint capital 𝑋 to lie, to lie from small 𝑥 to 𝑥 + 𝑑𝑥 or maybe 𝑥′ to again 𝑑𝑥 

whether here ok. Because they are so there are no relation between them. So, it does not 

matter whether temperature is from here to here or here to here ok. 

 

 This will always be same in both the locations as long as 𝑑𝑦 is fixed ok. So, it will be like 

the chance of capital 𝑌 falling from small 𝑦 to 𝑦 + 𝑑𝑦. It will be that it will be independent 

of capital 𝑋. Because physically if they are such that there is no relation between them, So, 

there is no point, there is no meaning of the statement that I am constraining capital 𝑋 to 

lie from here to here and then measuring 𝑌 and capital 𝑌 chances of that you know falling 

from small 𝑦 to 𝑦 + 𝑑𝑦 is this one.  

𝑃𝑌
𝑋⁄
(
𝑦

𝑥⁄ )𝑑𝑦 



So, that will be independent of where capital 𝑋 is, So, this will then turn out to be, this is 

independent of that, it will simply be this. 

 

 Just general as we have seen earlier just probability of capital 𝑌 lying from small 𝑦 to 𝑦 +

𝑑𝑦 that was this. The conditioning will have no effect. In that case p x y as we have seen 

earlier, this you could write as sorry free variable, this you have seen already, the 

constraining variable capital 𝑋, so, now, it will be the probability density of this. So, this 

is as you have seen under the above assumption that there is no you know dependence of 

capital 𝑌 or 𝑋 and vice versa. This will be simply p y p x x. 

𝑃𝑋,𝑌(𝑥, 𝑦) =  𝑃𝑌
𝑋⁄
(
𝑦

𝑥⁄ )𝑑𝑦 

= 𝑃𝑌(𝑦)𝑃𝑋(𝑥) 

 

 There is a product of individual probability densities. Individual probability densities also 

called marginal densities and in this case we say 𝑋  and 𝑌  statistically independent. I 

abbreviate it as S I statistically independent. Then the joint density is a product of marginal 

densities or this conditional density has no effect of the condition, So, if the conditioning 

variable capital 𝑋 that goes. It becomes just the marginal density of the free variable 𝑌 all 

right. 

You can generalize it to case like you know three variables. Suppose now you have got 

three random variables 𝑋, this is 𝑌, this is 𝑍 and 𝑥, this much is 𝑑𝑥, 𝑦, this much is 𝑑𝑦 and 

𝑧, this much is 𝑑𝑧. In that case also. My drawing is not good. So, let me erase this. 

This much is 𝑑 𝑥, this is 𝑦 and then sorry. This is 𝑑 𝑦. Now, I got it. So, here suppose I 

consider this thing 𝑝 𝑧 is the free variable, suppose at 𝑥 𝑦, as an example only, 𝑑 𝑧. We 

have seen it all what does it mean, if I constraint capital 𝑋 and 𝑌 to lie, capital 𝑋 lie from 

here to here, capital 𝑌 line from here to here. 

 

 That is this plane whether here or here or here. Subject to that the probability of capital 𝑍 



lying from small 𝑧 height to height small 𝑧 + 𝑑𝑧. That was equal to this proportional to 𝑑 𝑧 

and proportional to constant. But suppose capital 𝑍 is such a random variable it has nothing 

to do with 𝑥 𝑦, no relation. So, it will not depend on the constraint. 

𝑃𝑍
𝑋𝑌⁄ (𝑧 𝑥𝑦⁄ )𝑑𝑧 

𝑃𝑍(𝑧)𝑑𝑧 

 It will be simply equal to just p z z d z, marginal density. In that case we will say, sorry, 

in that case we will say, 𝑧 is SI statistical independence with 𝑥 𝑦 and in this case we will 

have p x y z, you can write as p z by x y times p density of, joint density of x y and this is 

nothing but p z only now all right.  

𝑃𝑋𝑌𝑍(𝑥, 𝑦, 𝑧) =  𝑃𝑍
𝑋𝑌⁄ (𝑧 𝑥𝑦⁄ )𝑃𝑋𝑌(𝑥, 𝑦) 

= 𝑃𝑍(𝑧)𝑃𝑋𝑌(𝑥, 𝑦) 

So, you can write like this. That means, if they are, if out of the all the random variables, 

some of them are statistically independent of the rest. So, you take the joint density or in 

this case marginal density because you have already one, but you take the joint density of 

one set here and multiplied by the joint density of the other set here. 

 

 The two sets are statistically independent. If further capital 𝑋  also and 𝑌  also are 

statistically independent between themselves then this again further you can break as 𝑝 

capital 𝑋 of small 𝑥 into 𝑝 capital 𝑌 is small 𝑦. So, the three are statistically independent 

in that case. So, depending on the case you can break up like this all right. This is one thing. 
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Next, now we consider one expression that was considered earlier, covariance between two 

random variables 𝑋 and 𝑌. Covariance - it was denoted by c x y, expected value of, minus 

the mean y, minus the mean, its physical meaning was explained that time, this is the ac 

part, incremental part around the mean this is incremental part around the mean. If x and y 

are highly related to each other, either both will go up above their mean together or below 

their mean together. So, product will be positive in this case, plus into plus- plus, minus 

into minus till plus and only average out, you get a good number positive number. Or it 

could be such when it goes out, maybe it goes down and vice versa. 

𝐶𝑋,𝑌 = 𝐸𝑋𝑌[(𝑋 − 𝜇𝑋)(𝑌 − 𝜇𝑌)] 

 

 So, in this case if you average out you will get a good negative number of good magnitude. 

But if there is no relation between them then sometimes this increment could be positive 

and some then it is positive and again when this is positive sometimes it could be negative 

and vice versa. So, when you take all cases and product and average you know it may 

cancel each other and you get close to 0. So, that you give us an idea about the degree of 

correlation between x and y, if covariance is high they are highly correlated, high means 

high magnitude. If covariance is 0 they are not correlated they are called uncorrelated all 



right. 

𝐶𝑋,𝑌 = 𝐸𝑋𝑌[𝑋𝑌 − 𝜇𝑋𝑌 − 𝜇𝑌𝑋 + 𝜇𝑋𝜇𝑌] 

 So, now, this E is actually there are two random variables. So, now, I can put 𝑥 𝑦 and E is 

a linear operator. So, if I now break it, x into y minus mu x y minus mu y y plus mu x mu 

y. So, it will be E x y on this, then minus E x y on this, then minus E x y on this, plus E x 

y on this. So, if you apply E x y on this, so, product of the two random variable, they are 

average expected value. 

 

 It is called correlation. It is denoted by correlation. And then E x y on this, of which mu x 

is a constant, E x y means what multiplying by the joint density and integrate. So, mu x is 

a constant not random it will go out. So, it will be mu x times E x y of y. 

 

 But I told you I in previous lecture, I have shown that if there is a function and the function 

here is just y itself, it is a function of one variable and you have got more than that variable 

here and you have got other variables also with respect to which you carry out the 

expectation. Then those variables simply drop, So, x will drop. So, this is equivalent to E 

y y which is equal to mean of y that is mu y. Similarly, E x y of, 1 minute, x mu y, it is just 

a minute, it is x into mu x into y mu y into x this will be x. So, again mu y will come out. 

 

 E x y we work on x. x is the function, but it has only one variable x. So, y will drop out. It 

will be E x x which is mu x. So, mu x and then E x y on this. So, this times the joint density 

integrated. 

 

 There is a meaning of E x y of something, is a constant. E x y that means, this into the 

joint density p of capital X comma y bracket small x small y dx dy integral. So, this will 

come out of the integral because this is constant. And that integral will be 1, because the 

double integral of that joint probability density. So, it will be just mu x mu y. 

𝐶𝑋,𝑌 = 𝐸𝑋𝑌[𝑋𝑌] − 𝜇𝑋𝐸𝑋𝑌[𝑌] − 𝜇𝑌𝜇𝑋 + 𝜇𝑋𝜇𝑌 



≡ 𝐸𝑌[𝑌] 

= 𝜇𝑌 

 

 So, minus mu x mu y, minus mu x mu y, plus mu x mu y. So, it will give rise to R x y 

minus mu x mu y.  

𝐶𝑋,𝑌 = 𝑟𝑋𝑌 − 𝜇𝑋𝜇𝑌 

This means if 𝑥 𝑦 are uncorrelated then 𝐶𝑋𝑌 = 0, which means, it could be 0, correlation 

is product of the means. And often we deal with random variables which have 0 mean. So, 

if mean, one of the means is 0 or both the means are 0, then uncorrelated, which means this 

that will also mean, correlation also 0, covariance 0, correlation also 0 all right. 

 

 But in general, uncorrelated means covariance 0 and correlation is a product of the means. 

Only if the means are, at least one mean is 0 then correlation also is 0, But not always, this 

is the meaning of uncorrelated.  

𝑟𝑋𝑌 = 𝜇𝑋𝜇𝑌 

Now suppose x y are statistically independent that means, this joint density is product of 

the marginal densities. It was taught in the previous class. In that case, 𝑟𝑋𝑌 which is 𝑟𝑋𝑌is 

a expected value of the product, so, double integral, small x, sorry this is capital So, capital 

X takes values small x, capital Y takes value small y into the joint density dx dy. 

𝑃𝑋𝑌(𝑥, 𝑦) =  𝑃𝑋(𝑥)𝑃𝑌(𝑦) 

𝑟𝑋𝑌 = ∫ ∫ 𝑥𝑦 𝑃𝑋𝑌(𝑥, 𝑦)𝑑𝑥 𝑑𝑦

∞

−∞

∞

−∞

 

 So, there is a general formula, this is a function of two variables, which is the product itself 

multiplied by the joint density double integral. So, the joint density if you can break like 

this because they are statistically independent then we have one integral, in which x will 



occur at this p and dx, another integral, but this is the mean expected value of x, this is the 

expected value of y. So, this is mu x mu y.  

= ∫ 𝑥𝑃𝑋(𝑥)𝑑𝑥 

∞

−∞

∫ 𝑦𝑃𝑌(𝑦)𝑑𝑦

∞

−∞

= 𝜇𝑥𝜇𝑦 

So, if they are statistically independent 𝑟𝑋𝑌 is the correlation of the product of the means 

means they are uncorrelated the covariance is 0. This means if x y are statistically 

independent then 𝐶𝑋𝑌 = 0 because 𝑟𝑋𝑌 is product of the mean as required here means x y 

uncorrelated. 

 

 So, if they are statistically independent that is if the joint density can be broken, it can be 

as a product of the individual marginal densities probability densities then the covariance 

is 0, correlation is the product of the means and they are uncorrelated. But the converse is 

not always true that is suppose this is given that covariance is 0 or equivalently 𝑟𝑋𝑌 

correlation is product of the means, that does not necessarily mean that the joint density 

you can write as a product of the individual densities. That happens only once when capital 

X and Y are called jointly Gaussian random variables, that I will consider later, but not in 

general. This always always true if statistically independent they are uncorrelated, but if 

they are uncorrelated it is not guaranteed that they will be statistically independent, that is 

the joint density can be written as a product of marginal densities ok. That depends on that 

particular density and there is a particular probability density form called Gaussian Gauss 

Gaussian. 

(Refer Slide Time: 21:46) 



 

So, joint Gaussian for two random variables that we will see later ok. Now with all this 

background I consider multiple random variables not just X or Y or X Y or X Y Z I will 

have seen general maybe p number of or n number of random variables joint random 

variables. So, let X 1 X 2 instead of Y, X 1 X 2 dot dot X maybe p, p joint real continuous 

random variables that is in every experiment you are observing these separately. One could 

be temperature, one could be humidity, one could be other things, you know, I mean all 

together, there may be some relation between they may not be, they are observing all right. 

So, they have a joint density or all those things. 

𝑋1, 𝑋2, …𝑋𝑃 

 

 Everybody has a mean, so, E X 1, E X I of X I is a mean of that mu I. So, X 1 has been 

mu 1, X 2 has been mu 2 dot dot dot all right. and I form a vector small x bar, underscore, 

I put these variables in a vector form, in a stack all right. Then from each and also I put the 

means in a vector form, then consider this X minus mu, that is X 1 random variable minus 

mu 1, X 2 minus mu 2, dot dot dot. So, increment or the incremental part around the mean, 

it can be positive negative like the AC component this is the DC this is the, mu is the DC 

average and this is the AC around the mean. 

𝐸𝑋𝑖
(𝑥𝑖) =  𝜇𝑖 



𝑥 =  

[
 
 
 
 
𝑥1

𝑥2

.

.
𝑥𝑝]

 
 
 
 

 

𝜇 =  

[
 
 
 
 
𝜇1

𝜇2

.

.
𝜇𝑝]

 
 
 
 

 

𝑥 − 𝜇 =

[
 
 
 
 
𝑋1 − 𝜇1

𝑋2 − 𝜇2

.

.
𝑋𝑃 − 𝜇𝑝]

 
 
 
 

 

 So, fluctuating sometimes positive sometimes negative same here same here ok. Now if I 

consider this thing X minus mu vector as it is, this column vector, into its transpose, it will 

be a matrix, column into row. So, ith row, any ith row and jth column, maybe jth column, 

this limit will be what? ith So, Ith guy and when it becomes row, jth guy that is 𝑋𝑖, 𝑋𝑗 

minus 𝜇𝑗, their product, if you see the way this matrix is form this is a vector it is row. So, 

first element into first element of this, first element into second element of this, first 

element into third element of this, that is of the first row formed. Then second element into 

first element, second element into second element, second element into third element, dot 

there is a second. 

 

 So, ith row is formed how ith element times first guy that is here, first ith element times 

second guy that is here second like that. So, ith times the jth ok. So, this will be 𝑋𝑖 minus 

𝜇𝑖 into 𝑋𝑗 minus 𝜇𝑗 all right and if I apply now expected value on this, expected value with 

respect to all of them, 𝑋1, 𝑋2, …𝑋𝑃. So, this E will work here, but you see only two random 

variables 𝑋𝑖𝑋𝑗 present. So, as I told you all others will drop off only 𝑋𝑖 and 𝑋𝑗 will remain. 

𝐸𝑋1,𝑋2,…𝑋𝑃
[(𝑋 − 𝜇)(𝑋 − 𝜇)2] 

 So, it will be E of just 𝑋𝑖𝑋𝑗, all other random variables will go, that I have told already 

shown earlier. Only those who are present in this function on them those variables only 



will occur. So, we will get and this is nothing, but covariance between these two random 

variables. So, 𝐶𝑋𝑖𝑋𝑗
 all right. 

𝐸𝑋𝑖𝑋𝑗
(𝑋𝑖 − 𝜇𝑖)(𝑋𝑗 − 𝜇𝑗) =  𝐶𝑋𝑖𝑋𝑗

 

 So, this matrix is called covariance matrix. Matrices are are shown by me by upper case 

letter with an underline. Vectors column vectors are shown by me by lower case letter with 

an underline. But if there is no underline then it is a scalar it could be upper case lower case 

does not matter. So, I repeat again capital letter underscore - matrix, lower case letter 

underscore - vector and if it is not underscore it can be lower case upper case, but it is your 

is a scalar fine. 

 

 So, this is the covariance matrix. Now you see one thing if I now take the j comma ith row, 

it was i comma j by the same way j comma ith in the same token, you will have this will 

be E again only first j comma i first take this product, So, 𝑋𝑗  minus 𝜇𝑗 , now that will 

multiply 𝑋𝑖 minus 𝜇𝑖 and only these two random variables will survive here, others will 

drop off. So, it is this, but these two things are same. 𝑋𝑖 minus 𝜇𝑖, 𝑋𝑖 minus 𝜇𝑖, it is first 

here, it is second here. 𝑋𝑗 minus 𝜇𝑗 coming second it is coming first, but product is same. 

 

 So, they are same. So, C is such a matrix C i comma j is same as C j comma i. So, it is a 

symmetric matrix. Another one C i comma i there is a diagonal ith row ith column that will 

be both are same, that will be E that is 𝑋𝑖 only 𝑋𝑖𝑋𝑖 is 𝑋𝑖 and 𝑋𝑖 minus 𝜇𝑖, 𝑋𝑖 minus 𝜇𝑖, j 

and i are same now. So, 𝑋𝑖 minus 𝜇𝑖 whole square which is the variance, sigma 𝑋𝑖 square 

variance of 𝑋𝑖 which is greater than equal to 0 variance cannot be negative because this is 

square and then you are averaging. 

𝐶𝑖𝑗 = 𝐶𝑗𝑖  

𝐶𝑖𝑖 = 𝐸𝑋𝑖
[(𝑋𝑖 − 𝜇𝑖)

2] =  𝜎𝑋𝑖

2  ≥ 0 
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So, then this cannot be negative ok. So, I stop here we will discuss properties of correlation 

matrix or covariance matrices in the next class. Thank you very much. 


