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So, we continue from what we were discussing in the last class. dN was this desired 

response vector xN hat x0 this column is called xN column then one cycle delayed if it is 

N it is N minus 1 if it is 1 it is 0. So, our notation was this we go up to z to the power minus 

N minus 1 xN. So, N minus 1 delay should be 0 that means, minus N plus 1 and W EN was 

what is E0 E1 dot dot dot dot EN at Nth clock what is the filter output? Filter output will 

be if you take this row xN xN minus 1 dot dot multiplied by this vector W0 xN W1 xN 

minus 1 and dot dot that is the filter output when you subtract it from dN that will be EN 

and so on and so forth for all the other indices. So, dN minus we have to do minimize the 

norm square of EN which is actually E transpose EN and we found out that this gives us to 

W Ls this squares as there is we minimize this with respect to the filter weights the one that 

minimizes that gives us to this and this tends to the optimal filter or inverse P as N becomes 

large that we have seen yesterday. 
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 But there is no explicit use of R matrix there is input autocorrelation matrix or P vector 

there is a cross correlation vector between x of N vector and dN that is why you know we 

do not have to make any approximation like we did in the case of LMS where R and P were 

replaced by so called bad estimates and we paid the price that convergence was not 

absolute, but it was only in the mean. This is this thing this is called pseudo inverse of 

matrix xN actually called Moore-Penrose pseudo inverse also called least squares inverse 

of xN.  

 

What it does this matrix you are trying to make xN W as close as possible to dN so that if 

you have the error vector error vector norm square is minimum then the solution is get is 

this. If an exact solution exists that is you find you really there is a W for which xN W 



equal to dN then when you minimize EN the norm square of P N then you can minimize 

up to 0 value because for that solution error is 0 if there is a solution and this one solution 

exists xN W equal to dN then the error is 0 which means the minimum norm square of EN 

achievable is 0 alright which means EN itself can be 0 and if N is 0 in that case dN you 

will get W which under normal circumstances you get by ordinary inverse that I am 

showing. 

 

 But suppose xN is square matrix also invertible that is full rank that is xN inverse exists if 

xN is invertible it is full rank. So, xN transpose also invertible we all know from basic 

matrix theory right. In that case this xN transpose and if it is invertible then xN transpose 

xN if we take inverse xN transpose now AB inverse is B inverse A inverse. So, it will be 

xN inverse xN transpose inverse xN transpose. So, these two cancels these two cancel you 

get xN inverse. 

 

 So, in that case if xN is square and invertible then obviously, dN minus xN W if we equate 

that to 0 there is a solution which gives exactly dN that is xN into W gives exactly dN 

because that solution is from this equation if xN is I am telling again if xN is square and 

full rank. So, xN W equal to dN there is a solution and that is xN inverse dN and for that 

the error is 0 right that is what this pseudo inverse you know reduces to from the formula 

you can see if xN is square and invertible xN is invertible xN transpose is invertible. So, 

xN transpose xN inverse is xN inverse xN transpose inverse and then xN transpose these 

two cancels you get identity. So, you get xN inverse. So, in that case this pseudo inverse is 

nothing, but ordinary inverse and solution will be just xN inverse dN whole error is 0 

because xN is full rank. 



 

So, there is a unique solution xN W equal to dN that equation in which case error will be 

0 minimum. So, norm square will be 0 there is a minimum norm square achievable and that 

is the optimal solution right. So, this boils down to ordinary inverse when this matrix is 

square and invertible, but not otherwise alright this is very famous thing alright. Next thing 

suppose xN is a random process you are measuring variance suppose you are measuring 

not even variance make it more general WSS 0 mean you have to estimate R x x k estimate. 

So, that means, you should have xN xN minus k plus xN minus 1 x N N minus k N minus 

1 N minus 1 minus k and dot dot dot may be you take up to some L. 

 

 So, it is N minus L minus k. So, total L plus 1 N N minus 1 N minus top N minus L. So, 

total L plus 1 cases. So, you divide by this this what we have right. If I take this part this is 

actually you can see xN transpose because xN vector we all know it. 

 

 If I define xN like this here or maybe I go up to index 0 x0. So, this is the x0 x minus k 

alright. So, you have got x0 as before x1 dot dot dot xN xN minus L L cycle delayed. So, 

xN becomes xN minus L then N minus L minus 1 dot dot dot and this will be 0 minus L 

which is also denoted as z inverse L xN by your notation right. And this summation is 

nothing, but xN transpose x N minus L you just take a transpose of this x0 x minus L ok. 



 

 I have taken to be k. So, this is not just a means it is not L it is k just a change of notation 

it should be k xN becomes N minus k xN minus 1 becomes N minus 1 minus k like that 

alright. So, if you take this kind of thing xN transpose xN minus L then you get this x0 x 

minus k here x1 x minus k plus 1 index dot dot dot xN xN minus k xN xN minus k ok xN 

minus 1 here xN minus 1 N minus 1 minus k like that ok. So, this will be a good estimate 

of the correlation ok this will be a good estimate of the correlation. This product just you 

have to take the average by dividing by L plus 1 right. 

 

 

But now suppose so, correlation includes variance also if you just have k equal to 0 k equal 

to 0 then x transpose xN will be xN into xN xN square xN minus 1 into xN minus 1 that is 

xN minus 1 square and dot dot up to x0 square add all the square terms and then divide. 

So, that will be a good estimate of the variance. This is a special case of correlation right 

or xN is 0. Now suppose from N equal to 0 to some N0, xN has one xN has some statistics 

some variance correlation etcetera. But after this N0 the statistics changes. 

 

 So, now you are if you are calculating correlation ok you are going like this index 0 1 2 



dot dot dot here is your N0 then N0 plus 1 N0 plus 2 dot dot dot dot. Suppose you are here 

up to this and suppose you are taking variance as a special case. So, we will be measuring 

what you will take x0 square x1 square x2 square up to xN0 square and then square xN0 

plus 1 square xN0 plus 2 square. But remember during this part onwards statistics has 

changed is the variance here is no longer the same as the variance here. But you are mixing 

up you are mixing up the squared values from here and squared values from here adding 

and then averaging. 

 

 So, you are part of from this part from this, but as you move along you should have new 

variance is not it not contribution from old from past should come down. Similarly, more 

generally speaking from correlation suppose you are finding out correlation with the gap 

k. So, x0 x minus k x1 x minus k plus 1 dot dot dot up to x0 x minus N0 minus k that is 

fine, but now the moment you are crossing to N0 plus 1 and N0 minus N0 plus 1 minus k 

and so on and so forth. This part you are taking data from this part, but here the correlation 

has changed, but you are mixing up 2 domain this side when correlation Rx k k had some 

value. So, if you had just restricted yourself up to this up to N0 and take the average x x0 

into x minus k x1 into x minus k plus 1 dot dot dot up to x N0 into x N0 minus k and then 

average you would have got very good estimate. 

 

 But you are now going further ahead you are bringing out data from the right of N0. So, 

from that that time after N0 correlation has changed. So, what you should then do you 

should forget this past and start from N0 plus 1 then N0 plus 2 you go further ahead take 

lot of samples just restrict your calculation of variance and correlation only there ok. Then 

there will be no mixing ok. Otherwise in that intermediate stage you know when part of 

this side and part of this side both are present both are taken into account then we will have 

wrong result of variance correlation etcetera. 

 

 To get rid of this we will introduce called a forgetting factor. The forgetting factor will be 

a scalar which will try to reduce the effects of past into the present computation past data 

into the present computation.  



 

Let me explain by writing the expression suppose earlier you are minimizing this. There is 

a 1 by N plus 1 that I am not considering because that that do not depend on the filter 

weights this errors depend on filter weight that we have explained earlier. Earlier you are 

minimizing this sum of squared error ok, but what happened? So, what you have here e 

square 0 e square 1 may be e square some intermediate point N0 e square N0 plus 1 dot dot 

dot e square N. 

 

 Now, suppose up to N0 input statistics during change. So, if you are restricted to 

calculation only up to this e square 0 e square N up to e square N dot add them divide by 

the number of terms you will get a good estimate of the previous variance or if you start 

from e square N0 plus 1 e square N0 plus 2 and go up to some e square N and suppose 

there are many terms here just add them and divide by the number of terms you will get 

again a good estimate of the new variance, but you are not doing that you are actually going 

one at a time. So, after N0 you included e square N0 plus 1 ok. And this whole sum then 

we will have one contribution from the current statistics and all other contribution from the 

previous statistics and you are averaging. So, that will be neither the variance of previous 

case not the variance of the current case and this will continue for some time till you have 



got you know very long contribution from the current N0 plus 1 onwards you go to N which 

is very large. 

∑ 𝑒2(𝑖) = 𝑒2(0) + 𝑒2(1) + ⋯ + 𝑒2(𝑛0) + 𝑒2(𝑛0 + 1) + ⋯ + 𝑒2(𝑛)
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 So, contribution from this side right hand side of N0 is much larger than the contribution 

here because here the length is up to N0 plus 1 0 1 up to N0. So, N0 plus 1 here N0 plus 1 

to N ok. So, if this side is becoming very long because N is very large ok, then overall sum 

will be dominated by this side which is fine the past is almost forgotten, but till that happens 

there is a intermediate range transition range when there will be error when part of some 

contribution from past and some contribution from present they will get mixed up. To avoid 

that we introduce a forgetting factor real positive lambda this between 1 to 0 in practice 

lambda is close to 1 like 0. 

0 < 𝜆 < 1 

 

99 0.98 and what we do is this we modify the summation lambda to the power N minus i 

this summation we considered. What is the summation let us write down i equal to 0 means 

lambda to the power N square 0, then lambda to the power N minus 1 square 1 plus dot dot 

dot lambda to the power this is N0 for it N0 I am going to the last point it was 0 N it was 1 

N minus 1 if it is previous term is N square N minus 1. So, it will be lambda times N square 

N minus 1 and then just N square N ok. What it is N minus 1 it is lambda to the power 1 

lambda to the power N minus i i. So, if i is N minus 1 N minus within bracket N minus 1 

is lambda lambda 2. 

∑ 𝜆𝑛−𝑖𝑒2(𝑖) = 𝜆𝑛𝑒2(0) + 𝜆𝑛−1𝑒2(1) + ⋯ + 𝜆𝑒2(𝑛 − 1) + 𝑒2(𝑛)

𝑛

𝑖=0

 

 



 

 So, lambda square N minus 1 and lastly when i equal to N lambda to the power 0 is 1. So, 

square N these are summation. Now in this summation because lambda is less than 1 even 

if it is 0.99 as we go for to this side to the left before lambda, I have got lambda square 

then lambda cube lambda square lambda to the power 4. As you go into the past power of 

lambda is increasing and lambda is less than 1 means progressively it is becoming less and 

less because lambda is less than 1. 

 

So, contribution for past is becoming less and less it is getting diminished because they are 

increasingly multiplied by higher and higher power of lambda. So, their contribution is 

diminished whereas, current term has full contribution previous term has little less because 

of lambda then previous term will be lambda square so, slightly less. So, overall 

contribution of the errors in this summation will be coming mostly from the current E N 

and some of the past E N's E N minus 1, E N minus 2, maybe E N minus 3 like that. I mean 

terms which are very remote like E 0, E 1, E 2 their contribution will be very less because 

their corresponding power of lambda will be large and lambda is less than 1. So, how much 

lambda to the power 10 that is much less almost 0 that is why so, this will this arrangement 

will help us forget the contribution from the past remote past and concentrate on and allow 

us to concentrate on the recent ok. 



 

 This means earlier we are considering earlier x transpose y where x and y just two vectors 

I am taking x transpose y where considering that was called the dot product or inner product 

between x and y x 0 y 0 x 1 y 1 dot dot x n y n summation, but now we will have lambda 

x n y n ok. This was x 0 y 0. Now, it will be x n y n current term as it is then just one 

lambda dot dot dot this is lambda to the power n x 0 y 0. So, this is nothing, but this when 

x and y both are same and both are equal to E N vector. So, E N transpose E N that was the 

thing earlier, but now there was that summation, but now with lambda summation has 

changed. 

 

 So, this will be actually not x transpose y, but x transpose y is this now a lambda has come. 

So, this is equivalent we can see x transpose then one diagonal matrix I will tell you what 

the diagonal matrix is y where this lambda capital lambda lambda to the power 1 and 

lambda to the power 0 is 1 this side 0 this side 0. This lambda n y means lambda to the 

power n y 1 lambda to the power lambda to the power n y 0 lambda to the power n minus 

1 y 1 dot dot dot ok. Then x transpose. So, you have x 0 lambda to the power n y 0 that is 

what you have here plus x 1 lambda to the power n minus 1 y 1 ok. 
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 So, x 1 lambda to the power n minus 1 y 1 and so on so forth this is the expression. In the 

case of variance both x and y are E N vector. So, it will be so now, norm square will be no 

longer E N transpose E N like x transpose x or x transpose y no longer E N transpose E N, 

but it will be E N transpose then this lambda N factor alright this is what this is what we 

have to minimize.  



 

 

That means, if you find out as before E N as E N minus x N w. We have to minimize this 

norm square which is E N minus E N minus ok. 

 

 Then we break it E N transpose E N transpose which is the new norm square on in the 

presence of lambdas then x N w transpose this this. So, that means, w transpose x N 

transpose minus other cross term D N transpose a row vector this plus, but before that these 

two as I said earlier these two these two terms both are scalars these two terms are same. 

Because one is both are scalar and one is the transpose of the other if you take transpose of 

this w transpose comes first and transpose of this transpose of this means x N transpose 

then this transpose, but this is a diagonal matrix transpose is itself D N D N transpose 

transpose which is D N. So, both are same instead of writing two I can write one and then 

twice that that I will write x N w plus the last term x N w transpose means w transpose x 

N in these x N w which is now I am going to write twice w transpose this is a vector column 

vector x N transpose lambda N matrix into matrix matrix matrix into column vector D N 

is a column vector overall column vector u can call it u. So, w transpose u if you 

differentiate into with respect to all the components of w and put it in a stack you will get 

u that means, this only. 



 

 So, first writing and then I will differentiate it. Remember this matrix also Hermitian 

because this is a diagonal matrix x N transpose right and we use the transpose here x N w 

transpose. So, w transpose x N transpose these Hermitian because if you take its transpose 

you get x N transpose here then transpose of this means transpose of this diagonal matrix 

which is itself transpose of this transposed x N which is x N. So, same as this this is a 

Hermitian matrix. So, if you have a Hermitian matrix R w transpose R w which is a scalar 

when differentiate it with respect to w all the components of w and put it in a stack it will 

be twice R w we have seen that. 

 

 So, now that means, after differentiation if I apply del w on this I will get twice of and 

here minus twice this thing you equate this to 0 and if this is invertible assume this to be 

invertible as before. So, your w L S will be inverse 2 2 cancels. So, only this lambda N 

matrix has come if you take that out it is same as what we had earlier and I am assuming 

this matrix to be invertible because of this region that even if this lambda N has come this 

will be positive semi definite always we will assume it to be positive definite. Firstly, it is 

Hermitian we have already seen you can take transpose we have already seen it is positive 

semi definite because if you take a C vector non 0 C vector non 0. 

 



 

 

 N cross 1. So, this C transpose this matrix C what happens to this now this lambda N which 

is lambda to the power N lambda to the power N minus 1 lambda 1 and 0 you can takes 

positive square root of lambda. So, if I construct this two matrices I am just denoting by 

this and this is square root lambda to the power N square root lambda to the power N minus 

1 square root lambda 1 0 0 and again same matrix. You can easily see if you multiply these 

two you get this all right. So, here C transpose X N transpose this square root and there 

again diagonal means they are Hermitian symmetric and. 

 

 So, I take this part call it D. So, if it is D you can easily see this is D transpose C transpose 

X N transpose and transpose of this is itself. So, this is norm D square. So, always greater 

than equal to 0 that is your positive semi definite, but when will be 0 I have to rule out that 

case. If it is 0 that means, D must be 0 norm square ordinary norm square D 0 square plus 

D 1 square plus D 2 square dot dot if it is equal to 0 everybody is non negative and adding 

and adding. So, every comp point has to be 0 then every contribution 0 overall 0 ok. 

 

 If D is 0 then that means, 0 you call it C 1 so that means, this matrix time C 1 0, but these 

are all positive elements. So, this matrix time C 1 means what this square root lambda to 

the power N into top first guy of C 1 then square root lambda to the power N minus 1 

second guy of C 1 dot dot dot and if that is that is equal to 0 and since lambda is positive 

square root lambda is positive then every element of C 1 has to be 0 ok. That is C 1 must 

be 0 vector understood if you take this matrix lambda N to the power half and take a C 1 

vector what you get this square root lambda into the to the power N times first guy square 

root lambda to the power N minus 1 second guy dot dot dot and you are equating that to 0. 



 

Therefore, elements of C 1 should be 0 because these are not 0s lambda is non 0 square 

root lambda is non 0 ok. So, C 1 0 vector and C 1 0 means x N C 0 which means columns 

of x N since C is a non 0 vector you can linearly combine the columns of x N by the 

elements of C and equate to 0. 

 

 So, one column you can write as a linear combination of the other columns, columns are 

linearly independent that is there is a linear relation involving the columns which we 

assume not to be not the case because data is coming purely randomly there is no linear 

relation in the background involving them or connecting them. So, that will not happen. 

So, this is not allowed ok because data in x N they are coming randomly there is no linear 

relation in those data vectors that does not happen in practice. Therefore, x N C you cannot 

find a non 0 vector C. So, that if you combine the columns of x N by the elements of C you 

get a 0 vector meaning at least one vector you can keep on the left hand side which has a 

non 0 coefficient from here others you take to the right hand side divide both side by that 

non 0 coefficient. 

 

 So, one column you can write as a linear combination of the other columns as though there 

is a linear relation between columns one column there is a formula by which you can get 



one column as a linear combination of other columns, but that does not happen in practice. 

In practice all the data come randomly there is no linear relation binding them. So, this will 

not happen. So, for non 0 C for non 0 C you cannot find a non 0 C. So, that x N C is 0 

because columns of x N are linearly dependent ok. 

 

 

 Of course, this for the same rigid I have said earlier N plus 1 should be greater than equal 

to capital N number of rows should be greater than equal to capital N number of columns 

that I have already explained the same logic holds here all right. So, this is the more general 

formula of W L S with a forgetting factor. We will start from here in the next class. Thank 

you very much. 



 


