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Lecture No # 24 

Second Order Analysis of LMS Algorithm 

So, we had seen earlier that the LMS algorithm the filter weights converge not absolutely, 

but only in mean to their respective optimal values as it has an index small n goes to infinity 

that is we need something called steady state that is for large value of n. Typically, we what 

we have there if you take say any kth weight we had already discussed this I am just 

repeating. So, wk n and you are going through iteration you are updating it via LMS 

algorithm ok, particular weight I am considering its optimal value may be here wk opt. So, 

initially it will fluctuate in any region you know if you go like this, but in the end, it will 

fluctuate in around the optimal one. So, if you measure the mean of this wk n at n very 

large n or as n goes to infinity like here the mean will be optimal weight. 

 

 

 

 So, we get convergence only in that sense then one can ask the question that how good it 

is because if it is still fluctuating over a wide range. So, at any iteration I get a value much 



away quite different from wk op,t because it is fluctuating over a wide range how to control 

the range how to make sure that the range is small ok. So, for that we require a second 

order analysis that is, we will take the error between wk n and wk opt that is called filter 

weight error this is for only kth component, all the components put together will be a weight 

error vector vn we will take that and we will take the variance of each other ok. And sum 

all the variances that variance will give you the power of the fluctuation right because 

otherwise, it can I mean if you do not take variance if you take the just the value it can be 

highly positive highly negative when you add them is 0. 

 

 So, you can indicate that are on the average value is small. So, we are happy, but actually 

not because plus and minus both are there that is why they cancel each other, but the 

moment you take variance it is the difference between wk n and wk opt. So, that increment 

you are taking and you are taking the square of that. So, that positive increment you can 

get you get positive value positive power and their average. So, if that is less then the range 

of fluctuation will be less. 

 

 So, that is why the second order analysis that is variance analysis of the filter weight error 

ok that is what we have to we have to carry out and that is a very tedious exercise, but I 

will not go through all derivations because that is beyond the scope, but I will give some 

important results in between and then carry on with the remaining part of the derivation 

with that. So, that you can develop an insight all right. So, here I take the filter weight error 

vector not with respect to a particular component say kth component, but all together minus 

the corresponding opt all right vn wn as you know we have got.  

𝑣(𝑛) =  𝑤(𝑛) −  𝑤𝑜𝑝𝑡 

𝑤(𝑛) =  (

𝑤0(𝑛)

𝑤1(𝑛)
⋮

𝑤𝑛−1(𝑛)

) 



So, all the weights you have wk n here and w opt is a corresponding optimal vector. So, 

this will give you the filter weight error wk n minus wk opt filter error for k equal to 0, k 

equal to 1, k equal to k like that all right this component ok. 

 

 And in general, we are considering complex case. So, LMS algorithm in LMS or for that 

matter any adaptive filter says w n plus 1 or let me make it simpler. Suppose you have got 

an adaptive filter output error is en ok, not necessarily LMS what I am going to present is 

more general just an adaptive filter, filter coefficient vector at any nth clock is this you are 

updating them by some algorithm adaptive algorithm. So, at the nth clock the output error 

will be desired response minus as you have seen say w ok. Let us consider real case because 

I remember I have not done possible in the complex LMS algorithm. 

 

 So, let us carry out with the real case. So, in the real case it will be w transpose n xn right, 

w transpose n xn this is a filter output, because this is a filter xn goes in this you have seen 

many times filter output is yn at any nth clock, these are the filter these are the filter 

coefficients. So, this w transpose n xn means and xn is the data vector no change in 

definition I am just repeating them. So, w transpose xn is w0 xn plus w1 xn minus 1 dot 

dot dot which is the filter output and wn is updated by some adaptive algorithm fine, but at 

any nth clock wn is what if you take this w opt to the left-hand side it is a w opt plus the 

incremental part vn. So, if you replace that here it will be dn minus vn plus w opt transpose 

xn alright, then you take this in one place what is w opt transpose xn that is if I have w opt 

here then the corresponding filter output is w opt transpose xn ok. 

 

 Instead of this w0 n wn minus 1 n if I have w opt coefficients like w0 opt w1 opt wk opt 

and all that corresponding filter output will be that is w opt transpose xn like it is w 

transpose wn transpose in general case xn if wn is w opt it will be w opt transpose xn.  



 

 

So, when you are putting the optimal filter, you are going to the best case because yn and 

dn they are difference en has a minimum variance that is how w opt was derived that you 

know optimal filter R inverse P that was derived by minimizing the variance of the output 

error between dn and yn ok. So, that is the best case that time yn becomes a very good 

estimate of dn because the error between them has been the minimum power minimum 

variance. So, that is this that is why I call it this also error output error filter output 

subtracted from dn, but this is an optimal error e opt n let me call it e opt n and another 

term I have coming from the weight error vector term vn transpose xn alright. Therefore, 

what is the variance of this error variance. 



 

 

 So, that is what we will work on in the next page. So, what we have is en is this. So, let 

me rewrite again what we have obtained is en is e opt n minus vn transpose xn where e opt 

n we have seen is dn minus the filter output with optimal filter as the filter coefficient 

vector ok. So, therefore, if I take the variance expected value of this is real. So, no point 

input in mod and square because square itself will make it positive. 

 

 So, e square n is this is a scalar alright this is a scalar the square of it I can always write 

like e opt n as it is or to make it even simpler for you I go through one more step e square 

n en is a scalar right. So, I can always say this is en en transpose because en is a scalar 1 

by 1 matrix. So, its transpose is itself then if you put en as this it is e opt n minus vn 

transpose xn into its transpose minus or maybe I put the transpose outside minus the same 

guy transpose. And if you take down the product of these two e opt n e opt n transpose e 

opt n transpose is e opt n only. So, it will be expected value of e square e opt n square that 

is variance of e opt n because it is 0 mean and therefore, e opt n itself is a increment and 

squaring up and expecting variance. 

𝑒(𝑛) = 𝑒𝑜𝑝𝑡(𝑛) −  𝑣𝑡(𝑛)𝑥(𝑛) 



𝐸[𝑒(𝑛)] = 𝐸[𝑒(𝑛)𝑒𝑡(𝑛)] = 𝐸[(𝑒𝑜𝑝𝑡(𝑛) −  𝑣𝑡(𝑛)𝑥(𝑛)) (𝑒𝑜𝑝𝑡(𝑛) −  𝑣𝑡(𝑛)𝑥(𝑛))
𝑡

] 

 

 So, this is the minimum variance because e opt n means output error variance is minimized 

then only you put w opt n and the corresponding error has minimum variance. So, if you 

calculate its variance, it will be a minimum thing you know I mean if you square up and 

take expectation dn square if you take expectation n will disappear because of w sn. 

Similarly, cross terms also dn and xn elements of xn they are you know jointly stationary. 

So, again the cross correlations will have no n xn itself all the terms of xn they are w s s xn 

is w s s process. So, any correlation between them and again independent of n that is why 

variance is just a constant independent of n minimum attainable. 

 

 

 So, that is here what we will show is this except I mean in addition to the minimum 

attainable there will be additional components together will be this. This is happening 

because we are not using w opt when you are calculating en we are using some arbitrary 

wn which is updated by some adaptive algorithm. So, there en is not just e opt n and extra 

component coming due to the filter weight error that will contribute to some additional 

variance terms here that is what we evaluate this is fine. Then e opt this cross term v 

transpose n xn e opt n and minus actually e opt v transpose n xn e opt n and minus e opt n 

v transpose n xn transpose v transpose n xn transpose. Now, v transpose n xn is a row 

vector this is a column vector. 



 

 So, you got a scalar and scalar transpose itself. So, this is actually equal to itself because 

this is a row vector this is a column vector row vector into column vector is a scalar any 

scalar and its transpose, they are same. So, this scalar transpose of the scalar is the scalar 

itself. So, you can replace this by v transpose n xn v transpose n xn is a scalar multiplied 

by another scalar e opt n like here. So, these two terms are same and there is last term is 

expected value v transpose n xn if I take transpose of this x transpose v x transpose n vn 

all right. 

 

 So, this is equal to minus these two terms are same. So, twice e let me write v transpose n 

xn e opt n plus all right. Now, to analyze further we make an assumption we make a more 

generalized we earlier obtained I had what is called independence assumption right. In the 

elimination analysis we assumed that the current filter weight vector wn is statistically 

independent of the current data vector xn and the reason we made the assumption that was 

also the motivation was clear that time I made it clear that time. We will just extend it here 

we will assume. 

 

 

 We assume wn is statistically independent of xn of course, and also dn all right. Logic is 

same if you really write wn in terms of wn minus 1 wn minus 1 in terms of wn minus 2 and 



all that and go up to w0 which is an initial condition. I mean all the other terms they did 

not involve xn and corresponding error en, but en will have again dn and you know xn I 

mean xn all right and so on and so forth ok. So, this summation as I explained that time 

will be largely you know dominated by terms from the past because there is that is majority 

in number and past terms are usually uncorrelated with or even statistically independent 

with current terms that is why you can say wn is statistically independent of this. If you do 

not understand you just go back to my lecture and that time go back to my lecture on LMS 

convergence analysis that time I made I explained what is meant by independence 

assumption. 

 

 So, it is just this ok just that time it was wn was assumed to be independent of xn ok. It 

was assumed to be independent of xn and now dn has been brought into it all right dn has 

been brought into it. So, if that be now you see E of n it depends on dn it depends on xn w 

is constant here. That means, E of n is a function of dn and xn. So, here E of 10 is a function 

of xn and dn right consider vn, vn is nothing, but what is vn? vn is nothing, but wn minus 

w opt. 

 

 So, basically you are subtracting a dc a constant from wn ok. So, if wn is statistically 

independent of xn and dn so is vn, because vn and wn are equivalent it is just a dc shift of 

wn by a constant w opt. So, if wn is statistically independent of xn vector and dn scalar so 

is vn ok. So, here vn it is statistically independent of xn and E of n depends on dn and xn. 

So, it is a function of dn and xn this is the xn itself. 

 

 So, this part is a function of xn and dn this is a vector xn and this is a scalar E of n both 

are statistically independent with wn and therefore, vn E of n because E of n depends on 

dn and xn w is constant here and dn and xn they are statistically independent with wn and 

therefore, vn ok. So, E of n is statistically independent of vn and therefore, v transpose n 

so is xn by this assumption. So, xn vector multiplied by the scalar E of n this resulting 

vector is statistically independent of this. So, expected value of so what does it mean? It 

means if I have suppose I need some space if I had suppose 2 vectors x and y they are Si 



statistically independent then E of x transpose y will be what E of x transpose y mean first 

component of x which is x1 first component of y which is y1 x1 y1 plus x2 y2 plus dot dot 

dot maybe x p y p suppose length is 1 to p then E working on x1 y1 will be E x1 E y1 then 

E x2 E y2 E xp E yp it is same as then becomes equivalent to E of x if you take E of x first 

that is E of x1, E of x2, E of x3 this vector that transpose E of y, E of x1, E of y1. So, here 

you have got this vector E of x1 here top guy is E of y1 they are multiplied then next guy 

this is a row vector because of transposition E of x2 here E of y2, E of x2, E of y2 because 

statistically independent overall expectation of the product is expectation of x component 

into expectation of y component alright. 

 

 That means, this will be expectation of v transpose n into expectation of this ok, 

expectation of xn into E of n this we can do. That means, it will be let me call it give a 

name this the variance this will be having this component minus twice have a look E of 

this and then E of this. You can do this transpose I think there was transpose. So, you can 

either apply E on vn first then you take the transpose or first you do the transposition make 

it row vector then apply E on that either way it will be same into E of xn E of n plus this 

sorry E of v transpose xx transpose v. Now, what is this term xn E of n we know this should 

be 0 the vector into scalar. 

 



 

 So, scalar times every component and this is 0 because under optimality condition we have 

seen the current optimal error it is orthogonal to there is uncorrelated to it each component 

of xn ok. This again you can see you can write like you know E xn and E of n is dn minus 

W transpose xn and W transpose xn is same as x transpose n W and then x you write E of 

xn into dn that is p vector minus E of xn x transpose n W is constant. So, it goes outside E 

of xn x transpose n there is R and W. So, it is W opt under W opt because it is E of W opt 

and W opt is R inverse p. 

 

 So, p minus R R inverse p. So, R R inverse cancels p. So, it is 0 that this is exactly what 

we did last time all right. So, these two terms go. So, I am left with this much plus an extra 

component ok. So, because I did not use optimal weight optimal filter, I use just any 

arbitrary Wn. 

 

 So, overall output error variances gone up from the minimum attainable by a factor this 

extra factor. Remember one thing by your independence assumption Wn and therefore, Vn 

that is statistically independent of xn right.  

 

 

Now, you can see one thing that suppose as an example a side story suppose I give you two 

vectors ok. A B is one vector may be alpha and I give another vector beta as x y and it is 



said alpha beta there is a sign suppose given this is V transpose sorry V transpose and it is 

given something like this E of like alpha transpose like V transpose alpha transpose then 

beta say beta transpose and then again alpha. You can do one thing beta beta I mean what 

will happen is this you have got A B alpha transpose beta beta transpose and alpha. 

 

 So, you get A B and beta beta transpose will be x y column vector x y row vector it will 

be x square x y y x there is x y y square right. And now x square into A plus x y into B 

multiplied by A on that if you apply expectation. So, that will be you know explain because 

alpha and beta are statistically independent E will get separated it will like you know I 

mean it will like this. This term E of x square A plus x y B into A plus again B into x y A 

plus y square B this E will acts separately on x square x y again x y and y square another 

E will be work on A into A B and all that B into A it will be like that. You will see same 

thing if I keep one E like you know this is E with respect to both alpha beta. 

 

 Suppose I keep E with respect to this alpha out keep it as it is here you apply E beta x 

square into A ok. So, because E beta is only for x y components. So, it will work out and I 

could separate out because they are statistically independent E alpha beta is E alpha E beta. 

So, E alpha beta if I apply on this, I take out E beta overall E over this will be what one 

expectation with respect to x y that is beta another expectation with respect to alpha A B 

they will separate out. So, the one with respect to beta I am directly applied here E beta x 

square A again E beta x y B and similarly E beta x y A plus E beta y square B alright this 

is what I am doing. 

 

 But this is same as though I am applying E beta here E beta E beta x square into A A into 

E beta x square into A again E beta x y into B into A this is A. So, A E beta x square E beta 

x square into A plus E beta x y into B E beta x y into B together times A plus B times B 

times within bracket E beta on x y E beta on x y into A plus E beta on y square into B. I 

am able to separate out E alpha beta as E alpha into E beta because they are statistically 

independent ok. So, then I can write like this I mean I can keep E alpha out and push like 



this ok. So, on the inner thing this matrix I apply E beta which is a which is you know 

restricted to the elements of beta and then carry out the product then apply E alpha. 

 

 The same thing I can do here because here instead of alpha I have got VN. So, alpha 

transpose VN transpose and instead of beta I have got xN, but elements of VN and xN they 

are statistically independent because of the statistical independence assumption. So, same 

thing here so, which means I can write as E with respect to V if you want V transpose N E 

working on this and E working those will be input autocorrelation ok. E which is should 

be x working on this will be what nothing, but input autocorrelation. So, V transpose N or 

VN this product I have to now carry out which will be a scalar that have to take expectation 

with respect to VN elements of VN ok. 

 

 

 That will give me this extra component this I will analyze in the next class. Thank you 

very much. 


