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Lecture No # 14 

Optimal FIR Filter 

So, we begin this lecture where we bring a new topic now. And this new topic will be using 

all the material that we covered earlier. Based on that, but this is the key topic in adaptive 

signal processing which is optimal filter. Also called Wiener Norbert Wiener the famous 

man and this is FIR filter. Essentially because IIR filter has this additional requirement of 

maintaining stability and causality that the poles must be within unit circle, but so far 

whatever research has gone into it and lots have gone into it over 50 years. I mean there is 

no guarantee nobody could give a guarantee that the filter that they will derive will have 

you know no stability issues and all that ok. 

 

 And ok even if optimal IIR filters are there going to adaptive IIR filter from there is 

impossible because when it is adaptive IIR filter there is no guarantee that you know we 

will be able to ensure its stability and causality more about that later. Let us consider FIR 

filter first. Here basic structure is this there is a random process which is maybe 0 mean 

WSS. Probability density, joint density all those things can be of any type that we are not 

you know doing here. 

 

 And you want to pass it through a filter FIR filter of coefficients W0, W1 dot dot dot W 

capital N minus 1 and filter output is nothing, but a linear combination of Xn and then Xn 

minus 1 there is W0 Xn W1 Xn minus 1 plus dot dot dot W N minus 1 Xn minus this all 

right. This is a linear combination of current input and N minus 1 capital N minus 1 past 

input they are linear combination multiplied by coefficients and added. These coefficients 



are so called filter coefficients. They are filtered because they work on current data and N 

minus 1 previous data and continuously for every N that is why it is a filter.  

 

But this purpose of this filter is one thing that is there may be some target response dN 

which is a desired response. 

 

 Sometimes called target signal, training signal and all those. Purpose is to see that you 

design the coefficient such that YN is a very good estimate of dN all right. So, YN is 

possibly the best estimate of dN. So, that means if I take the error between the two plus 

here minus here call it EN. EN should have minimum strength all right. 



 

Now certain notations this YN you can write as YN you can write as some W vector 

transpose XN vector where W vector is W0, W1. So, these coefficients put in a vector form 

XN see the underline it means a vector. It is a current data vector sometimes called 

regression vector it is XN. You understand W transpose XN will be what this is a row 

column vector. So, after transpose it will become a row vector and then multiplying. 

 

 So, W0, XN, W1, XN minus and dot dot which is what this. Now one thing you can say 

that why not design the coefficients where dN equal to YN that you can do if you create 

dN to this right hand side and there are unknowns W0, W1, W capital N minus 1. So, 

capital N number of unknowns data is known XN, XN minus 1 this data is known. So, this 

is just one equation right hand side is dN which is known and left hand side is this linear 

combination where XN known XN minus 1 known and all that W0, W1 dot dot dot W 

capital N minus 1 they are unknown. So, one equation so many unknown. 

 

 So, you have infinite solution you can pick up any solution put that here. So, then YN will 

be equal to dN and you are very happy N is 0, but relax that will not So, then YN will be 



equal to dN and you are very happy N is 0, but relax that will not work. Because once you 

design the coefficients that if you put here. Next time at N plus 1th clock it will be W0 XN 

plus 1, W1 XN and dot dot dot that linear combination there is no guarantee it will be 

satisfying dN plus 1. If at that time mirror margin could be very huge. 

 

 So, that is why this is not a procedure. So, procedure is to design the coefficients so that 

in an expected sense average sense En has minimum strength again you cannot minimize 

expected value of En. Remember En is dN minus YN, dN is a random sequence this is also 

WSS 0 mean. En is random because dN minus YN dN is random YN is obtained from the 

input samples and input samples are random XN is a random variable XN minus 1 is a 

random variable so on and so forth. So, YN is a random variable dN is a random variable 

so difference is a random variable. 

 

But you cannot just minimize this because that does not mean that error will even if you 

minimize it does not mean error will be less because En is 0 mean. So, sometimes it will 

go positive sometimes negative. So average could still be very minimal 0 maybe. So 



expected value of this could be minimum possible maybe 0, but that does not mean that 

this is not varying over a wide range which is basically which does not serve any purpose. 

I want its power rather I should have this e square N En is real here we are dealing with 

real case we have been WSS real this also real. 

 

 So, that is why En is real so we just take square of it there is no complex. So e square N is 

the power average and then expected value of that is the average power which is the 

variance here and that is fine because whether En goes positive or negative e square N is 

always positive and expected value that will give you the power. So, En is power if it is 

less that means power of En is less means its variance is less. That is around mean it will 

vary over a smaller range the increments around the mean which is 0 will not be having 

large spread because then power will be you know average power will go up. If it is spread 

if it is variation around the mean is small there are in an expected sense this also will be 

less average power. 

 

 So, therefore, we will minimize this. Now certain things are given to us here one is xn dn 

they are jointly stationary xn minus sorry xn minus m and dn jointly stationary, maybe, I 

rewrite it, xm let me put it m dn they are jointly stationary for all m n meaning and they 

are real meaning if you take the correlation between x and d rx dk that is e you can take 

any index here n d n minus k no star here because all are real gap is k. So, it should depend 

only on k even if one sample is x another is d the correlation between them depends only 

on the gap. So, it is called cross correlation because one is the random process x another is 

d both are not x. So, not auto correlation, but cross, but even in the cross correlation that 

depends on the on the gap k then only you say they are jointly stationary and that is what 

is given to us number 1 ok. 

 

 In fact, what is given to us is this vector p where p is e of this data vector this is the data 

vector times dn.  



 

So, xn dn will be rx d0 xn minus 1 dn n minus 1 dn. So, gap is n minus 1 minus n gap is 

minus 1. So, it will be rx d minus 1 so on and so forth. So, it is basically rx d0 rx d minus 

1 dot dot dot rx d last one is n this index minus So, it is basically rx d0 rx d minus 1 dot 

dot dot rx d last one is n this index minus this index so small n cancels out so minus capital 

N plus 1. 

 

 So, this is given because we have, we must be given some information. So, exact xn exact 

dn we are not given neither are we bother about them because just one observation of this 

sequence or that sequence does not matter because they will change in the next time, but 

statistical properties is given that is the cross-correlation values between this dn and xn at 

least for this many for 0 lag or minus 1 lag lag or gap minus capital N plus 1 gap and at 

least that is given to us ok. That is one information given to us another thing that is given 

to us is rxx and we have studied this earlier xn x transpose n just transpose not Hermitian 

transpose because conjugation has no meaning here because we are for simplicity we are 

considering real case later we consider xn d2 complex case of course, ok. So, right now all 

are real xn dn and therefore, the filter coefficients are not real. This xn x transpose n we 

have already seen earlier it takes a top plate structure and it is a Hermitian matrix it was 



like this rxx 0 and this continues rxx 1 this continues and this symmetric matrix now not 

conjugate symmetric. 

 

 So, rxx 1 again will come here continues and dot dot dot it is like this. So, this is also given 

the auto correlation matrix of order, you know if the length is capital N, So, it is basically 

N cross N this is given ok.  

 

So, this information auto correlation matrix is given for input process xn at least up to the 

size capital N cross capital N and cross correlation values at least this many these values 

ok that is given we have to now design the filters. So, that the variance of the error is 

minimized That is what we have to do is E of E square n and let me give it in N epsilon 

square I could put a you know index N because after all the it is a function of N here, but 

very soon we will see that because of stationarity this entire function will be free of the 

index N and that is why I am not writing any N here in advance because I know what it 

will be. So, known N here, but to start with you could put a N or if you want I can put a N 

here later I will erase it and this is the variance this is basically what is. 

 

 So, square of what is en? en means desired response minus the filter output and filter 



output is yn yn was W transpose xn. This is your en and you have to take square of it and 

then the expected value. So, it depends on this filter coefficients present in this vector is a 

filter coefficient vector. So, W0 is a function of filter weight W0 W1 dot dot dot W capital 

N minus 1. So, capital N number of variables is a function of, So, I have to minimize it. 

 

 So, I have to take partial derivative with respect to W0 equal to 0 with respect to W1 equal 

to 0 so on and so forth and by that process I have to find out W0 W1 dot dot dot.  

 

That is called the optimal filter for which this will be the variance will be minimum. Let us 

see one thing if I expand it now certain tricks, I will apply this is a scalar any scalar and its 

transpose they are same because scalar is nothing, but a 1 cross 1 matrix. So, I can if I take 

a transpose of it I get by the same thing because 1 cross 1 matrix transposition is the same. 

So, I can write it as en first that is dN minus into again en, but that en I will write as 

transpose of en transpose of en en en transpose en transpose is en itself. 

 

 So, en into en n square. Now you break it E of dN and dN transpose dN transpose is dN. 

So, E of d square N which will be the dN is 0 means, So, this is the variance of dN and dN 



is Wss, So, variance does not depend on N. So, variance of dN minus E of W transpose xN 

dN ok.  

 

Then other two terms minus if it is dN if it is W transpose xN then dN transpose next is dN 

transpose W transpose xN next if it is W transpose xN dN transpose next is dN W transpose 

xN transpose ok. It is like you know separately if you call it A in general if you have 

something like you know a vector A it is a scalar here, but in general a vector A plus a 

vector B suppose again W transpose xN is a scalar, but I am doing a more general thing 

suppose A plus B or maybe this I will do later forgive it. 

 

 You can see one thing W transpose xN dN alright I will write the other term later. Now 

here what does it mean xN into dN xN consists of all the random variables and dN also 

random variables. So, product is a random variable and W transpose times that. That 

means, if you quality a vector may be random vector hN. So, you have got the elements of 

hN because because of course, xN is a column vector dN is a scalar. 

 

 So, dN times every element of xN and that you get hN and hN is random because dN is 

random and all the elements of xN are random. So, hN now W transpose row vector times 



hN column vector what we will have W0 times the first guy here W1 time second guy here 

and dot dot dot added then expect it. But the expectation that can be pushed inside that 

summation we have seen the expectation is linear. So, expectation of a summation of 

variable random variable means it is a summation of expected value of the value of each 

of the random variable and this random variable will be some W term from here and some 

term from here, but this is constant not random. So, E will come directly on the term from 

here. 

 

 So, it will be W0 E of first component of hN plus W1 E of second component of hN and 

dot dot dot which is which means it will be W transpose then E of hN. Then you have got 

the first component there is W0 times the first component of E of hN W1 and like that and 

hN is xN dN which is given to be cross correlation vector p. In the previous page you have 

seen. Similar manner the other term is dN W transpose N xN transpose. Now these two 

terms are same because this is row xN dN if you call it hN. 

 

 So, W transpose hN and here it is dN this is nothing but dN x transpose N W alright. So, 

this is if hN is xN dN what is h transpose N? This is h transpose N alright because h 

transpose N means dN is a scalar it is like a 1 by 1 matrix. So, dN will come in the front 

dN transpose xN transpose, but dN transpose is dN, because it is a scalar after all and xN 

transpose. So, this is hN transpose.  



 

So, W transpose hN row vector and column vector or hN transpose W you know they are 

same. 

 

 If I give you two vectors a and b you can verify they are column vectors. So, if you make 

it a transpose as a row vector times b column vector. So, a1 b1 plus a2 b2 plus a3 b3 like 

that dot dot you will get the same thing if you have b transpose a b1 a1 b2 a2 b3 a3 same. 

So, these two terms will be same because W transpose hN or hN transpose W this is scalar. 

 

 So, both are same ok. So, again it will be same as what I have here W transpose P. So, this 

entire thing will be same W transpose P W transpose P and last one W transpose xN E of 

you take the transpose on it. So, x transpose N W transpose transpose there is W ok. Again 

xN if you take xN, xN transpose, xN is a column vector this is a row vector. So, you got a 

matrix a matrix every element is a product of one data of xN another data of xN. 

 

 So, it is random. So, random matrix if you call it aN, aN times W will be again a scalar. 

So, the entire thing could be maybe h1N. So, aN times W is h1N which is column vector. 

So, W transpose W is not random, So, W transpose row vector times h1N expected value 



as you have seen earlier will be W transpose will go out. So, it will be this will be W 

transpose E of h1N and now h1N is aN W and now aN W see this is square matrix. 

 

 So, every term multiplying the terms here and getting added that is how you do aN W on 

that if you apply E, E will not work on the elements of W because they are not random E 

will work on the elements here. So, we will get the same thing if you apply E on the 

elements of this aN matrix first and then multiply that by W because E does not apply on 

W, W is not random.  

 

So, it will be W transpose E of aN and aN is this your aN by mistake I have erased that 

page, but does not matter I can go to another page. So, it will be W transpose e aN W and 

aN is xN x transpose N and E of that is R auto correlation matrix W transpose R xx I am 

dropping that xx from here just for simplicity W. So, expected value of e square N is sigma 

d square minus that next two terms were same W transpose P and this W transpose R W. 

 

 Now you see first right hand side is independent of N that is why I can write it simply as 

epsilon square no need to put a subscript N and this N has disappeared from here because 

of stationarity like E of xN x transpose N is R that is independent of N because of 



stationarity or E of xN into dN that is P independent of N because of joint stationarity 

between xN and dN alright that is one thing. Another thing is you see this is a quadratic 

why quadratic first consider this, this will give you W transpose P. So, it is like W0 P0 W1 

P1 dot dot dot dot dot ok this, but this is first order not W0 square not W1 square this is 

first order, but here R W R W means you have got R you have got a rho of R W. So, this 

times W0 this times W1 all that. So, already R W means every term consist of elements of 

W0 to WN and then you are multiplying one the first term here by W0 second term here 

by W1 and all that ok. 

 

This first row times this will be the first guy this is a vector after all column vector first 

guy will be first row times this that will consist of contain all these elements of W that will 

be multiplied by the first element here W0. So, it will be W0 square, W0 W1, W0 W2, W0 

W3, dot dot dot. Then second row times this will give the second guy of this vector again 

that will have W0 to WN minus 1 that will be multiplied by W1 from here. So, we will 

have W1 W0 W1 square W1 W2 dot dot dot. So, that way this is the second order 

component and this is a first order component. 

 

 So, model is a second order function and therefore, we should minimize this by taking 

taking this partial derivatives i equal to 0 1 dot dot dot dot N minus 1.  



 

So, every partial derivative by do epsilon square together is a notation it is not epsilon and 

then square here by epsilon square whole together is a notation. So, deriving that which is 

for Wi. So, you will get capital N equations one from each derivative at second order. So, 

if you do derivation with respect to W W0 or W1 or W2 you will get first order equation 

second order when derived will be first order. 

 

 So, we will have a set of first order equations capital N numbers capital N unknowns you 

solve them and we will get the optimal one which will minimize this ok. But instead of 

doing like this by individual terms you know we define a derivative operator ok on any 

function f a function of the weights. It is nothing, but you took that take the partial 

derivatives f like f is e epsilon square here. In general del f del W0 del f del W1 dot dot dot 

dot I am stacking only del f del W N minus 1 these are definition. Then I do this apply this 

del operator derivative operator on epsilon square equate to a vector of zeros that is. 

 

 So, that will take care of these equation for all the I because this will be vector del epsilon 

square del epsilon del W0 equal to 0 then del epsilon square del W1 equal to 0 and so on 

and so forth. So, this is the equation we will be solving and that I will do in the next class. 

Thank you very much. 


