
Introduction To Adaptive Signal Processing 

Prof. Mrityunjoy Chakraborty 

Department of Electronics and Electrical Communication Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture No # 01 

Introduction to Adaptive Filters 

 

Okay, welcome to this course. And you know what it is adaptive signal processing. It is a 

very enjoyable course and through this course you will learn many things which are useful 

in several other subjects. In communication and signal processing, image processing, 

machine learning, deep learning what not. So, I presume towards the end of this course you 

will really be satisfied with lot of useful knowledge. Okay, my name is M Chakraborty, 

Professor Mrityunjoy Chakraborty, Head of Electronics and Electrical Communication 

Engineering at IIT Kharagpur. 

 

 So, I will be pleased to you know bring to you this interesting topic adaptive signal 

processing. Now, core of the adaptive signal processing is adaptive filter. So, development 

of adaptive filter in its application that constitutes the story of adaptive signal processing. 

Now, what is adaptive filter? You have done one digital signal processing course 

somewhere you know in your previous studies; I am sure. 

 

 So, you have studied FIR filters, IIR filters and you can design them to have things like 

you know I mean low pass filter, high pass filter, band pass filter like that FIR, IIR. In the 

case of IIR filter you may have studied Butterworth filter, Chebyshev filter and those kinds 

of things. Those filters are very good, but their problem is once you design all the 

parameters that is the filter coefficients are fixed. And you construct the filter using these 

coefficients and use it in practice it will work beautifully all that is fine. But suppose the 

purpose the environment in which this filter is supposed to work or its goal it changes after 

sometime. 

 



 No way to change the filter you know you must throw it out, you must construct a new 

one. But in a case of adaptive filter, filter coefficients are not fixed they are continuously 

adapted, continuously changed from clock cycle to clock cycle by some nice adaptation 

relation or formula. By some training method or by some adaptation method or by some 

adjustment method these are very all terms which are equivalent training, adjustment, 

adaptation. So, that at the current moment it is doing the best job for us ok. So, that is the 

story of adaptive filter we will I mean I will consider adaptive filter applications and its 

general structure not at the very beginning. 

 

 But may be after some lectures you know once I cover a very basic adaptive filter called 

least mean square LMS, and then I will present many applications. Because then you will 

be able to appreciate those applications. So, right now if I bring in the applications and then 

bring in the theory and development and all that you know algorithm development, I mean 

you want to appreciate that much. So, you give me the freedom to start the way I want that 

is I will start with basics and then develop some very basic adaptive filter. And then we 

will put it into applications that beautiful applications will come, but I am telling you 

applications come in various contexts. 

 

 Ok communication, control, signal processing, image processing, machine learning, deep 

learning, even micro engineering so many you know. To give you a just an idea about what 

is an adaptive filter. Suppose you are given an analog signal 𝑥𝑎, a for analog, 𝑥𝑎(𝑡) which 

has a sinusoid component ok. 

𝑥𝑎(𝑡) = 𝐴 cos(Ω𝑐𝑡 + 𝜙) + 𝑧(𝑡) 

Ω𝑐 is the frequency analog frequency, c for carrier. I mean I just I am just putting it Ω𝑐 its 

unit is radian per second. So, radian per second and time is second. 

 

So, second into second cancels whole angle must be radian you get by radian. So, radian 

per second is an angular frequency analog angular frequency may be plus of phase phi. 

This is a signal, but this is suppose added with some noise, white band noise, may be white 

noise ok. And noise power is not trivial not small I mean quite significant. You want to 

first process it digitally. 



 

 So, you will sample it may be at sample period, sampling period equal to may be capital 

T. So, nth sample of 𝑥𝑎(𝑡) will be 𝑥𝑎(𝑛𝑇), T, 2 T, 3 T, 4 T like that is why at those points 

we will have sample. And this I denote by 𝑥(𝑛). So, I have 𝑥(𝑛). So, before I do anything 

I am converting into discrete time form and then I will consider this problem how to 

eliminate the noise as much as possible ok. 

 

 So, it is  

𝑥(𝑛) = 𝐴 cos(Ω𝑐𝑛𝑇 + Φ) + 𝑧𝑎(𝑛𝑇) 

which is 𝑥𝑎(𝑛𝑇) which I call 𝑥(𝑛). So, omega c small t is that is the time point I am taking 

the sample. So, 𝑥𝑎(𝑛𝑇)  may be +Φ + 𝑧𝑎(𝑛𝑇) let me put 𝑧𝑎 if an analog to distinguish 

between analog and discrete time all right. Then little bit of DSP we know, Ω𝑐𝑇 =  𝜔𝑐 

which is digital frequency. This is basic of DSP basics in DSP you must be knowing, I am 

sure. 

 

 Digital frequency, its unit is radian per second and here second. So, second and second 

cancels radian. So, you can make that assumption let me call it 𝜔𝑐, c for carrier. So,  

𝑥(𝑛) = 𝐴 cos(𝜔𝑐𝑛 + Φ) + 𝑧(𝑛) 

So, this is one discrete time sequence cosine sequence and this I call 𝑧(𝑛) like 𝑥𝑎(𝑛𝑇) was 

called 𝑥(𝑛), 𝑧𝑎(𝑛𝑇)  is called 𝑧(𝑛). 

 

 So, equivalently I have been given in discrete time domain one sequence which has a 

sinusoidal component which is by signal, but this is added with some good amount of noise 

and this is a wide band signal. Your purpose is to filter out this noise as much as possible. 

So, ideally what you should do you should design a band pass filter of frequency response 

like this at this magnitude response like this. At 𝜔𝑐 and at −𝜔𝑐 you will have a pass band 

very narrow pass band. 

 

 So, around 𝜔𝑐 and at −𝜔𝑐  there is a pass band very narrow pass band. If you pass this 

signal through this this cosine signal whose frequency is 𝜔𝑐 that will pass through, but 

noise which is wide noise which is wide band noise I mean this spread over the entire 



frequency range from −𝜋 to 𝜋 you know indeed DSP, this is the range and this becomes 

periodic whatever you have here that gets repeated. So, you see from −𝜋 to 𝜋. So, what 

the entire range I mean this noise will have it represents. So, filter band pass filter will chop 

off will chop off most of the noise it will allow only the noise frequencies in this which are 

within the pass band. 

 

 So, obviously, most of the noise power will go and fine. So, you are happy with the signal 

which will go through and very little noise will filter through this because pass band is very 

narrow and this goes on for some time. Now, suppose after some time signal Ω𝑐 frequency, 

signal frequency Ω𝑐 changes to some another frequency Ω𝑐′ means analog signal 𝜔𝑐 which 

is Ω𝑐𝑇 this change to some new digital frequency 𝜔𝑐
′  which is alright then this will be 

outside the pass band may be 𝜔𝑐
′  is here.  

Ω𝑐 →  Ω𝑐′ 

𝜔𝑐 =  Ω𝑐𝑇 →  𝜔𝑐
′ =  Ω𝑐

′ 𝑇 

So, then the signal also will be filtered out by this band pass filter because this center 

frequency the frequency of the sinusoid is outside the pass band and I am gone. So, my 

filter which is working fine now it will fail to work in future when the frequency changes, 

but if it is an adaptive filter what it will do this band pass filter if it is adaptive, it will not 

stop at this it will continuously monitor the input data and it will track the variation of the 

input frequency. 

 

 So, if the frequency changes it will also change its pass band by some formula. So, that 

new pass band is here ok. So, pass band will shift there will be an adaptation mechanism 

training mechanism adjustment mechanism by which the coefficients of the filter will 

change band pass filter. So, that if the frequency changes from input frequency changes 

digital frequency I mean Ω𝑐 to  Ω𝑐
′  the filter band parameters also will change. So, that new 

pass band will be here and here. 
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 So, the signal again will pass through ok. This is a very famous example this is called 

adaptive line because if you take the frequency I mean if you take the discrete time Fourier 

transform of this this will have two impulses at 𝜔𝑐 and −𝜔𝑐 those are like lines and this 

will be flat quite noise. So, what this it will do it will enhance the lines that is signal will 

be enhanced or effectively noise will be reduced and it will be done adaptively. So, this 

example is that of adaptive line enhancer alright. So, this is gives you an idea about what 

is adaptive filter. 

 

 So, there will be an adaptation mechanism that is required because if the external 

environment changes like the frequency incoming frequency changes I should be able to 

process correctly ok. So, I should have an adjustment mechanism adaptation mechanism 

by which my parameters can be changed to suit to current requirements. So, the adaptive 

filter there is a filtering part in parallel there is an adaptation part alright. So, there is 

actually a filtering part and there is an adaptation part. So, there is an adaptation algorithm 

which works on the filter coefficients and adjusts. 

 

 So, symbolically a schematically we show like this tuning. So, at every clock it is 

calculating new parameters for the filter and changing. So, that change is indicated by this 

and adaptation algorithm requires input information also output information also ok. This 

is a typical structure of adaptive filter both the filter part and adaptation part. So, adaptation 

part is what is our target there are two very famous class of adaptive filter algorithms, one 

is called least mean square LMS, another is recursive least squares RLS alright. 



 

 We will study these and these, but again we will just give an introduction because this is 

a very huge topic many algorithms under each of them category each category has come 

up their analysis is quite involved and all that. So, we will not be able to cover all, but I my 

purpose is to introduce you to these two and through that journey also make you 

knowledgeable about many related things which you find useful in other subjects like 

signal processing, image processing, communication and as I told deep learning, machine 

learning and all that alright. There are two there are many books available one is adaptive 

filter I cannot remember the exact title whether it is introduction to the adaptive filter or 

adaptive filter theory and practice and all kind of thing, but essentially adaptive filter. This 

is by no other person that good old Simon Haykin, I think it is a Wiley book, Wiley Eastern 

available in India, another is a more involved book by Ali H. Sayed It is again Wiley 

Interscience New York available in the internet, I think New York. 

 

 There is another book of mine I mean which I like adaptive filter by an ex Iranian friend 

of mine his name is B. Farhang Boron Geni, Prentice Hall. But apart from this please see 

my video lectures related you will find some useful information here. But most importantly 

it is very important in any of my subjects that I teach to attend to my lectures and understand 

there because many things I say in the class which are not found in any of the books ok 

they are very useful alright.  
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Now so how to go about the subject the basis of this subject is you know two things one is 

probability and random variable because the signals that we come across they are random 

in nature ok. 



 

 So, how to characterize them and all some basic properties and you know features and all 

you have to study like probability density of one variable, two variable, multiple variables, 

correlation matrix, covariance matrix, their properties all those ok. Random process these 

things I will cover I will take quite some time then I will go to what is called optimum filter 

and then make it adaptive filter by LMS and then I will take up the applications I will show 

many examples then I will come back I will do some analysis of the LMS algorithm that it 

should finally converge to the best filter you know if the adaptation should take you to the 

best filter and then I will take another category which is recursive risk squares again there 

are lot of many I will take the very basic one. So, that will be the flow of this course roughly 

twenty lectures, but I think this is a very good foundation for many related subjects 

including even neural network. Neural network also is a kind of adaptive filter only thing 

is in adaptive filter input is a sequence, time sequence, comes in time. In neural network 

we also have filtering kind of thing, linear combination we also have error pressure of 

threading, but input is not a time sequence, input is just a stationary data a block ok 

difference, but many things are common between the two. 

 

 So, in with that background I did start basic probability of random variables ok. So, we 

will consider real and continuous random variables. Ok, real and continuous like suppose 

you are measuring the temperature day time temperature call it T. So, T will take real value 

it cannot be complex, but T is not fixed any time in anywhere any part of the city or any 

time any during the day and night it will have fluctuating values ok different values. So, it 

is random it is real because it is not complex and it is not discrete it is not the temperature 

will be either 30 degree or 31 or 32 it can be anything. 

 

 So, on a real axis if it is a real axis suppose the origin is 0 degrees here it is continuous it 

can be here any way it is not discrete that it will be either 1 degree or 2 degree or 3 degrees 

ok it can be. So, this kind of random variables are called continuous and of course, real 

random variable. More formally whenever I say there is a random variable real continuous 

any random variable it means along with the random variable say x we denote the variable 

by X, always there is an experiment or trial or observation process ok by which we observe 



the value of this like a Bezier using a thermometer the temperature and find a value. So, 

that moment whatever be the value you get you assign that value to this. So, there is always 

in the background an observation or experiment and notion and notion of experiment or 

trial or observation along with a random variable that is it is not fixed every time I observe 

ok or I experiment and find the value give it to this. 

 

 So, its value changes fluctuate experiment to experiment, but there is an experiment or 

observation trial that notion of that goes with that and if it is continuous real then it will 

take in all experiment’s real values only not complex and if it is continuous the values will 

be continuous on the real axis it will not be taking specific discrete values that is the only 

thing all right. This is the meaning of random variable continuous real random variable. 

Now suppose this is my real axis, this is the origin X will take any value, I mean it is not 

necessary that it will take all the values from minus infinity to infinity, it may be 

concentrated in certain zone. For instance, if you are measuring temperature, you know it 

can be from may be 10 degrees centigrade to 40 degrees centigrade it cannot be 1000 

degrees centigrade. So, whenever you measure your measured values will may be 

concentrated in some zone, but there will be real and there will be continuous they will not 

take pre specified discrete values only there are continuous on these axes ok. 

 

 So, suppose 𝑋 now I want to find out probability, I must define probability. So, suppose I 

mean I have a position some 𝑥 this much value and 𝑥 to some small portion 𝑑𝑥 I take. So, 

𝑥 𝑡𝑜 𝑥 + 𝑑𝑥 and 𝑑𝑥 is very small, then the probability that 𝑋 in my experiments will fall 

here, that is probability that 𝑋 will be less than equal to this point greater than equal to this 

point. That should be proportional to this width because if it is larger so obviously, transits 

will go up of X falling here if it is smaller. 

 

 So, it will be smaller. So, as long as 𝑑𝑥 is very small I can say this probability is linearly 

proportional to this width 𝑑𝑥.  

𝑃𝑟𝑜𝑏(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥)𝛼 𝑑𝑥 



So, it is proportional to 𝑑𝑥 that means, it will be equal to some proportionality constant 

times 𝑑𝑥. So, that proportionally constant is given by 𝑃 and I put a subscript 𝑋 because my 

random variable is 𝑋 not 𝑌 or 𝑍. 

𝑃𝑟𝑜𝑏(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥) = 𝑃𝑋𝑑𝑥 

Because there may be a situation where I may have very probably random variables 𝑋, 𝑌, 𝑍 

to distinguish between them, I put a subscript not only at 𝑑𝑥  this is a proportionality 

constant ok. But not only that this 𝑃𝑋 will depend on where this slot is located that is at 

point 𝑥 because if I now take here the same 𝑑𝑥, the probability of 𝑋 falling here may not 

be same as this. It will depend on like as you tell do as I told you day time temperature 

maybe this concentrated between 10 degrees to 40 degrees if it is 100 degrees. 

 

So, obviously, there will be hardly any chance ok which means probability of 𝑋 falling in 

a slot like this will depend on where this slot is located here or here or here or here or here. 

So, this is located at the coordinate 𝑥. So, this will be this proportionally constant will vary, 

it will be linearly proportional to 𝑑𝑥, but proportionally constant cannot be same it will be 

changed depending on where is this slot located ok. So, it will be a function of small 𝑥 ok 

these are proportionally constant and that is called probability density function of 𝑥 alright. 

Therefore, probability of 𝑋 falling between two points some 𝑥2, 𝑥1 that will be what that 

is suppose I got 𝑥, this is 0, this much is 𝑥1, this much is 𝑥2. 

 

 So, probability of the 𝑋  will be here will be what I must sum up the probability of 

probability in this slot in this slot in this each of widths 𝑑𝑥. So, probability of 𝑋 falling in 

this slot of width 𝑑𝑥, in this slot of width 𝑑𝑥, again in this and so on. So, I must add since 

𝑑𝑥 is infinitely small this total probability will be nothing, but integral. It will not be a 

discrete summation, it will be integral, that you know integral as a definite integral as a 

limit of a sum, if 𝑑𝑥 is very small and goes to 0, this summation will go to become a 

integral. So, this will be nothing, but this thing summed, but summation will not be discrete 

sum will now be this is the probability. 

𝑃𝑟𝑜𝑏(𝑥1 ≤ 𝑋 ≤ 𝑥2) =  ∫ 𝑃𝑋(𝑥)𝑑𝑥

𝑥2

𝑥1

 



 

Therefore, a question comes probability of 𝑋 taking value from +∞ that is the extreme 

point to the right, to the extreme point to the left −∞, that will be just this input change the 

limits, but you understand in every experiment 𝑋 will take a value from −∞ to ∞. So, that 

is an event called certainty, that is an event is bound to occur, there is 𝑋 taking value from 

−∞ to ∞ in each trial.  

𝑃𝑟𝑜𝑏(−∞ ≤ 𝑋 ≤ +∞) =  ∫ 𝑃𝑋(𝑥)𝑑𝑥

+∞

−∞

 

So, probability of that is this. So, this is nothing, but probability of certainty. Now certainty 

is a global event, global parameter, sun rises in east. 

 

This is certainty all human beings will die certainty. all human beings were born one day 

certainty. So, they are basically same event, they are manifesting in defined form, but they 

basically mean the same thing that is certainty. That is something that is certain to happen. 

So, certainty will have a you know constant will have a fixed probability whether sun rises 

in the east, probability of that or all human beings will die, probability of that. 

 

 Basically probability of only same event that is certainty that is something which is certain 

to occur. So, that is basically a constant independent of whether I am talking in terms of 

sun or in terms of human beings dying certainty. So, this is nothing, but probability of 

certainty and that we can take to be a we can normalize to a value of our choice this is 

probability of certainty which we normalize to be 1. If we have taken 100 also does not 

matter, but globally it is taken to be 1, that certainty is an event which will always occur 

and we take its probability to be 1, which means this integral when −∞ is here and +∞ 

here. This is the probability of 𝑋 falling from −𝑥 to 𝑥 that is equal to 1 that we take all 

right. 

∫ 𝑃𝑋(𝑥)𝑑𝑥

+∞

−∞

= 1 
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 Now suppose you are given I am writing here now suppose given a 𝑓(𝑋), 𝑋 is the variable, 

𝑥 is the actual value ok. Now every time 𝑋 you find out by an experiment you plug in the 

value here you get something next time another 𝑋 plug in here you get something. So, this 

function also is random its value changes fluctuate randomly depending on experiment. So, 

what is the average value of this function? Average value means 𝑋 falling here ok because 

you have this slot the 𝑑𝑥 is so small whether 𝑋 is here or here or here or here or here 𝑑𝑥 is 

small. So, I will assume it will take a constant value f at the boundary whatever be the value 

same value whether I am here because 𝑑𝑥 is infinitely small. 

 

 So, function does not change much hardly changes. So, function value at that point which 

is 𝑥 ok that point which is 𝑥 that value will continue inside also ok that is the thing, but that 

will not always occur it is not that whenever I measure 𝑋 I will get this I will get this with 

a chance. So, what I do I multiply by a chance factor. So, if the chance probability of 𝑋 

falling here is high, value will be this will be you know multiplied by a weight appropriately 

high. that is that this value will occur with more power. If the chance of 𝑋 falling here is 

very less, then the chance factor which is this you know that probability of 𝑋 falling here 

that will be less. 

 

So, I will be multiplying this by this. So, its value will go down because chances are less 

ok. So, I will be applying a weight factor multiplication factor on this which is the chance 

factor ok. The chance of I mean having this value 𝑓 of this much 𝑥 which is same as 



whatever we have inside ok. Let me go to the next page I draw again this much is your 𝑥. 

So, this width is 𝑑𝑥 ok function is 𝑓(𝑋) takes the same value 𝑓(𝑥) whether here or here or 

here or here because 𝑑𝑥 is so small its value does not change. 

 

 So, when I conducted experiment, I observe 𝑋. So, I find out 𝑓(𝑋). So, that will be equal 

to this value with a chance what is the chance was chance factor was this much that is the 

chance of 𝑋 falling here. So, the value will not be this because I am not certain that I will 

get this. So, I have to multiply by the chance I have to use weighting, I have to weight this 

by a chance factor. So, I weight this by a chance factor then again you can take next slot. 

𝑓(𝑋) =  ∫ 𝑓(𝑥)𝑃𝑋(𝑥)𝑑𝑥

∞

−∞

 

 

 Again, 𝑓(𝑋) falling I mean taking value from here it will be multiplied by another chance 

factor f of you know and it will go on. So, if I want to take a weighted average this function 

into weight again another value into weight and if I add them. Basically, this will be integral 

because 𝑑𝑥  is infinitely small. So, if I add them what I am doing is actually you can 

understand one thing suppose I gave you some variables 𝑥1, 𝑥2 or maybe not 𝑥1, I gave 

you some values maybe 𝑦1, 𝑦2, … 𝑦𝑛 and I have scalars 𝑐1, 𝑐2, … 𝑐𝑛. So, I multiply 𝑦1 by 𝑐1 

weight, weighting using a weighting factor on 𝑦1 𝑐1, then 𝑦2𝑐2, 𝑦𝑛𝑐𝑛 and then divide by 

𝑐1 + 𝑐2 + ⋯ + 𝑐𝑛 this is called weighted average. 

𝑐1𝑦1 + 𝑐2𝑦2 + ⋯ + 𝑐𝑛𝑦𝑛

𝑐1 + 𝑐2 + ⋯ + 𝑐𝑛
 

 

 All of us know this. So, it was discrete same thing I am doing I am taking this function 

multiplied by a weight factor and this I am doing over all the slots. So, I am adding here. 

So, adding here adding here it was a discrete sum here is an integral. So, I am adding. So, 

if we divide it by sum of the weights are these weighting factors it was discrete sum now 

it is continuous sum ok. 

 

So, this is a weighted average or average or expected value of this, but this we have seen 

this is equal to 1. we have seen in the previous page because this is the probability of 



certainty that is 1. So, this entire thing we denote by 𝐸[𝑓(𝑋)] again I put a 𝑋 here because 

I may have many random variables 𝑋, 𝑌, 𝑍 and all that to distinguish, there is an alignment 

problem here. So, expected value average value it is a weighted average that will be same 

as because this is 1. So, it will turn out to be this here you put 𝑥 integral variable all right. 

𝐸𝑋[𝑓(𝑋)] =  
∫ 𝑓(𝑥)𝑃𝑋(𝑥)𝑑𝑥

∞

−∞

∫ 𝑃𝑋(𝑥)𝑑𝑥
∞

−∞

 

𝐸𝑋[𝑓(𝑋)] =  ∫ 𝑓(𝑥)𝑃𝑋(𝑥)𝑑𝑥

∞

−∞

 

 

So, this is called expected value, expectation, 𝐸𝑋[𝑓(𝑋)] average value all right. Example 1 

suppose 𝑓(𝑋) = 𝑋 itself very simple function 𝑓(𝑋) is nothing, but 𝑥 itself, then 𝐸𝑋[𝑓(𝑋)],  

𝑓(𝑋) = 𝑋. So, you put 𝐸𝑋[𝑋], 𝑥 here that will be what 𝑓(𝑥). So, this was X. 

 

So, this 𝑓(𝑥) integral will be 𝑓(𝑋) = 𝑋 . So, 𝑓(𝑥) is 𝑥  and this remains as it is. So, x 

multiplied by this probability thing trans factor integral and that is called the mean because 

expected value of the random variable that is mean you can denote it as 𝜇. 𝜇 of random 

variable with 𝑋. So, 𝜇𝑋 all right. 

𝐸𝑋(𝑋) =  ∫ 𝑥𝑃𝑋(𝑥)𝑑𝑥

∞

−∞

=  𝜇𝑋 
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Then another function can be, 

𝑓(𝑋) =  (𝑋 − 𝜇𝑋)2 

So, here expected value will be 𝑓(𝑥). So, it will be  

𝐸𝑋[(𝑋 − 𝜇𝑥)2] =  ∫ (𝑥 − 𝜇𝑋)2𝑃𝑋(𝑥)𝑑𝑥

∞

−∞

 

This is called variance and denoted by 𝜎2 you can put 𝑋 to indicate random variable X. 

What it means that 𝜇 was the mean this is 𝜇𝑋 and around that I have fluctuations. So, X 

will can be here may be here may be here may be here in experiment to experiment. 

 

 So, I am finding out the value minus the mean this much is the increment this much is the 

increment this much is the increment ok I am squaring them up. So, even if it is positive 

square of positive even if it is negative squaring of positive. So, every increment 

incremental part I am taking the power means I am squaring ok and then average because 

I am multiplying by the trans factor and integrating. So, it is the average power of the 

increment incremental part ok like it is a dc. So, if you take the waveform minus the dc that 

will be ac fluctuating around the origin. 

 

 So, then you square up square up square up square up average that is what it is. So, 



basically average ac power it is called variant all right. Now I consider joint random 

variable suppose I have got two random variables 𝑋 𝑌 ok both continuous and real like 

suppose you are measuring temperature which may be X and humidity which is Y. Now 

temperature humidity I do not know whether there is any formula relating them, but at least 

we understand that they have there is some kind of relation between them temperature they 

are all about atmosphere. So, one influences the other and vice versa how and all we do not 

know, but temperature humidity. 

 

So, every time I conduct an experiment, I observe not just one variable here I have measure 

2 which and these two have an internal relation between them one is temperature which is 

x another is a humidity y. Both are real because the economic complex both are continuous, 

they cannot be discrete that humidity is either this or that or that. So, both are they may be 

concentrated in some area or the real axis. So, in every experiment I measure a pair 

therefore, now instead of 1, 𝑥1 real axis which is for 𝑥 I will have 2 all right. And now I 

want to come to again similar notion of probability density not of 1, but of two variables 

jointly they are called jointly random variable ok. 

 

 So, I go to 𝑥 and then this much is supposed 𝑑𝑥 and here again I go up to 1 and suppose 

this much is 𝑑𝑦. So, this coordinate is 𝑥 and 𝑦. So, its coordinate is 𝑥, 𝑦, this point and this 

point is 𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦 all right. So, every time I conduct the experiment 𝑋 and 𝑌 together 

may fall within this box that is may 𝑋 may lie between 𝑥 to 𝑥 + 𝑑𝑥 simultaneously 𝑌 may 

lie between 𝑦 to 𝑦 + 𝑑𝑦 or may not ok because a random. So, if they lie if 𝑋 lies between 

𝑥 and 𝑥 + 𝑑𝑥 simultaneously with 𝑌 between 𝑦 to 𝑦 + 𝑑𝑦 that means, the pair lies here ok 

in this small box. 

𝑃𝑟𝑜𝑏(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥, 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦) 𝛼 𝑑𝑥𝑑𝑦 

 

 So, the probability that the pair 𝑥, 𝑦 will lie within this box will be linearly proportional to 

the area of the box because area is large that means, my chance will go up area smaller 

means chance will go down as long as the area is very small, I can assume it to be linearly 

proportional. So, probability of 𝑋  lying between 𝑥 + 𝑑𝑥  to 𝑥  simultaneously with 

simultaneous is very important that is why they are joined with 𝑌 that will be linearly 



proportional to linearly proportional to area, area is 𝑑𝑥 𝑑𝑦. So, equal to a proportionality 

constant. So, I put 𝑋 and 𝑌 here to under indicate which random variables are important 

are present constant 𝑑𝑥 𝑑𝑦. Now this constant will depend on the location of the slot 

because if the location is somewhere here same 𝑑𝑥 𝑑𝑦, but there is no guarantee this 

probability will be same here also because it is quite likely it may be likely that you know 

I mean more often you will have temperature in this zone and you know humidity in this 

zone hardly ever here. 

 

 So, basically the two probabilities will not same. So, 𝑑𝑥 𝑑𝑦 is same. So, proportionality 

constant will vary. So, that will depend on where this is located it is located at x y ok. So, 

it will be a function of and this thing is called joint probability density.  

𝑃𝑟𝑜𝑏(𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥, 𝑦 ≤ 𝑌 ≤ 𝑦 + 𝑑𝑦) = 𝑃𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

 

So, if somebody ask you in an interview what is probability density you have to give the 

entire background like if it is just only one ok. If it is only one you have to draw this line 

draw up to 𝑥  then 𝑥 + 𝑑𝑥  then tells that probability of 𝑋  falling here will be linearly 

proportional to this then the proportionality constant ok. 
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 That will be this thing probability density case you have to draw this line then you have to 

define that this is linearly proportional to d x then the constant which is a function of the 

location of the slot that is called probability density it is integral will be one all those things 

you have to tell all right. Now, after this so, certain things will follow very simple. 

probability just generalization from the previous example probability of 𝑋 lying between 

𝑥2 to 𝑥1 simultaneously 𝑌 lying between 𝑦2 to 𝑦1 this is nothing, but I have to integrate 

this over that zone 𝑥, 𝑦  𝑑𝑥 𝑑𝑦 now double integral from 𝑥1 to 𝑥2 from 𝑦1 to 𝑦2 and clearly 

from −∞ to ∞ if I do this again that is the probability of certainty, because the probability 

of XY lying between lying on this entire plane there is X from −∞  to ∞  and 

simultaneously Y from −∞ to ∞ that will always happen. So, probability of that is given 

by this formula this is again the same event which is your probability of certainty all right 

probability of certainty, but that is constant that is global that is always 1. 

𝑃𝑟𝑜𝑏 𝑜𝑓 (𝑥1 ≤ 𝑋 ≤ 𝑥2, 𝑦1 ≤ 𝑌 ≤ 𝑦2) =  ∫ ∫ 𝑃𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑥2

𝑥1

𝑦2

𝑦1

 

∫ ∫ 𝑃𝑋,𝑌(𝑥, 𝑦)𝑑𝑥𝑑𝑦

∞

−∞

 

∞

−∞

= 1 
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 So, this will be 1 ok. So, this much is for this lecture in the next lecture I will again proceed 

the same way I will assume that given a function 𝑓(𝑥, 𝑦) now or X comma Y. What will 

be the expected value of that and then I will take some cases of that and then I will go to 

something very related and useful called conditional probability density all right. So, I stop 

here now and we meet next time. Thank you. 


