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Hello welcome to lecture number 34. Today we will discuss a topic semi classical transport. As

the name suggest in semi classical transport, we treat electrons as a particle. Now when we

discussed about the band structure and then generally people discuss about the quantum

mechanics there and the wave nature of these carriers come into the picture. But if you recollect

this band diagram here and then we said that the group velocity is del E by del k times 1 over h

bar.

So, this is some big packet here you can say each position can be represented by some ray packet

with group velocity given by the band structure. So, the transport of these carriers they undergo a

lot of interaction with the others particles. Now let us understand the concept of this particle. Let

us say this is your silicon lattice unless these are the ions occupying these sides connected to

these four nearest neighbours.



These electrons are moving around this one this crystal. So, some are bounded and those which

are free they can move around. They are bounded by this crystal two and they are allowed to

have certain wave vectors, and then under this condition what we do? We represent these

electrons by a electron with mass M effective instead of the free space mass which is M 0. So,

what we have done basically?

We have taken this electron which behaves as a wave in the crystal structure and we have

represented it by a particle with different mass with some effective mass. So, that way we have

taken care of the wave nature to treat it classically. Then at zero kelvin these atoms are fixed,

these nucleuses are fixed. But as you increase the temperature this nucleus will vibrate and when

this nucleus vibrate this vibration we also call it phonon.

So, this quantized vibration of this atoms on their lattice side again we represent it was some

particle called phonon. So, this is basically comes from sound wave. So, the quantization is the

so this elastic movement of this crystal atoms. So, this elastic wave in quantized form is called

phonon. Similarly, when these atoms vibrate the electron cloud around it may go under

distortion. So, this nucleus is positive, electron in the cloud is negative so this is a dipole.

So, this dipole may change the polarity. So, if dipole is oscillating it will do some give away

some radiation. So, that will be electromagnetic wave and then active magnetic wave is

represented by a photon in particle form. So, there is electron, phonon and photon and there is

another particle which is the absence of electron and we call it hole. So, these two particles we

have discussed in detail the electrons and holes.

But phonon you can understand it is basically tells you all the temperature of the crystal and it

represents the elastic wave. So, what we do here in semi classical transport we monitor the

behaviour of these carriers especially the electrons and phonons and we treat them particle

between the collisions. So, let us say this wave pectate is interacting with some impurity or some

phonon and then to get scattered and then again it interact with some other impurity of phonon.



So, in between these two collisions we can use the Newton's laws to monitor the movement of

these carriers to model the flow of these carriers. So, that is semi classical transport. Why?

Because we are using classical laws of Newton with some effective mass for the electron. So,

this quantum part is basically taken in the form of effective mass and the corresponding band

structure. So, now let us go at.

In today's lecture we will drive the Poisson equation, continuity equation and we will introduce

the semi classical transport.
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So, in case of technology CAD it is a branch of semiconductor device modelling. So, it is

computer aided design. What we have to do? We have to solve for the carrier transport equations

so that is a drift is one form of transport then there is a diffusion another form of transport then

there is a thermoelectric current also. So, these two mechanisms we have already discussed.

Thermoelectric is a missile another mechanism where due to change in the temperature.

So, let us say it is at this is a piece of semiconductor it has high temperature, this is at low

temperature. So, then carriers will move both electron and hole will move from high temperature

to low temperature. So, we can also find out from this one whether it is n type or p type. Because

if you connect some meter here then this electron will move so this will give one direction of

current if electrons are in majority here. If holes are majority, then holes will move like this.



So, I will be in this case along the hole and for n type current will be opposite to the movement

of these electrons. So, the direction of current will be different. So, these are the basically carrier

transport. Then the driving force for these carriers will be the electric field and that comes from

the charge. So, we solve Poisson equation and the transport equation self consistently and there

are various models that are available in the literature.

So, standard is a drift diffusion model and we have already discussed some part of it. In coming

weeks, we will go in more detail about it. Then there is a Monte Carlo simulation which

basically take care of the we follow the particle be through some set of you know few hundreds

or thousands particles. We monitor them, we follow their path and then decide and calculate the

observable quantity such as current and so on.

Then there are molecular dynamic simulation then the hydrodynamic models which are more

advanced. Then of course we can directly solve the Boltzmann transport equation or we can

solve the quantum balance equations. So, these are different models that are available. So, there

are commercial tools for you for both of them but there is a physics bind it and if somebody is

interested, they can they can write their own code and calculate these transport parameters.
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Now in case of solving for the semiconductor devices we require both the information. We solve

for EM waves find out the EM fields and then this fields will basically cause the transport. So,

what we do? We calculate the transport equations the current flow equations. So, those current

flow equations will be like the current density of electrons the current density of holes. So, there

will be the current density.

Then we can also find out when the current flows the charge distribution will also change so

charge distribution. So, this will basically control the EM field basically. Then if you have

certain charge here then this charge will inter modify the electric field. So, this charge will

modify the electric field, the current will modify the magnetic field because if there is a charge

here then this will give the electric field if there is a current flow then that will give a circulating

magnetic field.

And the combination of this electric field and magnetic field will give the force. So, you

remember this Lorentz force F = q times e. If q is the charge on the carrier, then forcefully q

times E + q times V cross B if V is the velocity B is the magnetic field. So, this is the total force

that will apply on a carrier of charge q. So, each of them affect so the transport out outcome of

this transport equations which is the charge distribution and the current flow.

They control the parameters for the electric field and the magnetic field and this electric field

when it will again affect the flow of the earth charge. Because this electric field will control the

current flow. So, let us go through for this basic Maxwell equations.
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So, this Maxwell equations are one is modified Ampere law. So, all of you have learned in class

12th this Ampere circular law that a current J gives rise to circulating magnetic field. So, del

cross H is J so this is the curl of H is given by the current density J. Now but Maxwell did he

added another term to explain the current flow in a capacitor because in capacitor there is no

conduction current so that current is called displacement current.

So, total current is conduction current plus displacement current. So, here it is J here it is del d by

del t and again here is J. So, this total current give rise to the magnetic field or induction field

and same is true for the time varying magnetic field. So, the time varying magnetic field give rise

to the circulating electric field and thus a Faraday's law. Then Gauss’s law says a charge will give

rise to static electric field.

So, if there is a static charge it will give rise to static field because D = epsilon times E. So, these

are displacement field is a electric field so this charge give rise to the so charge is related to the

gradient of the electric field. So, if there is a positive charge here it will give the electric field

moving away from this particle. If there is a negative charge then electric field will be pointing

towards it.

So, that means these electric lines always start from the point of charge and they end at the

negative charge and that is not the case in case of magnetic field. Magnetic field lines are always



in a loop so that is why del dot B is zero. They are always in loop though they start at the same

point at the end at the same point. So, there are no magnetic charges there is a physical

significance. So, from these laws we can find out the Poisson equation and the continuity

equation.
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So, Poisson equation these are the constitutive relationship. So, D = epsilon E so epsilon can be

done as epsilon 0 times 1 + chi or you can also write epsilon 0 times epsilon r times E. So,

epsilon r is permittivity, relative permittivity is 1 + chi which is the electric susceptibility. So,

now here if you pay attention here intrinsic assumption is that this permittivity is time

independent.

So, it is possible in some scenario that permittivity may change as a function of time. But when

D = epsilon E it is assuming that epsilon is time independent and polarization by mechanical

forces neglected here. So, that we of course we will not encounter in this course. Then we know

that del dot B = 0 and we know the relationship that del dot of and del cross of A vector is

always zero.

So, this B can be represented by a del cross of A vector and we call it del cross A and A be

defined as magnetic vector potential. And a vector is given if its dot product and cross product

are given so if del cross A and del dot A are given then vector can be uniquely determined. So,



because del dot A is not controlled by any of the Maxwell equation, we can assume that del dot

A is 0 and that in phase we call it gauge condition.

Now when we substitute it to Faraday's law so Faraday law is del cross E = - del B by del t. So,

del cross E + del B by del t is 0. Now B is del cross A so you can take del cross outside so it is

become del cross E + del A by del D = 0. Now if del cross of something is zero so if del cross of

some function is zero then that function can be written as a gradient of another function, so that

is what is done here. So, E + del A by del t is written as - del psi.

Now this is equation two and this is equation one. So, D = epsilon E so here we can calculate E =

- del psi - del A by del t. So, epsilon E will be epsilon times, epsilon times, epsilon times. So, D

= - epsilon del psi - epsilon del A by del t. So, now we know that del dot D = rho. So, rho = del

dot - epsilon del A by del t - epsilon del psi. Now this del dot can be taken inside so - epsilon del

dot A del by del t - epsilon del square psi.

Now when we write like this so there are two B as we can write it. We can write del dot epsilon

del psi or epsilon times del square psi. When we take epsilon out, we are assuming that epsilon is

independent of position. So, if that is true then we can write like this. If epsilon is changing as a

function of position, then we have to keep the epsilon inside the del dot operator only and del dot

A is 0 by gauge condition. So, you can write rho = del dot epsilon del psi with - I. So, there is a

Poisson equation.
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So, del dot epsilon del psi = - rho now rho is the charge density. So, rho can returns q times

positive charges minus negative charges so positive charge is p negative charge is n. Now these

are the mobile charges plus donor ions which are positive minus acceptor ions which are

negative. So, this factor is C and of course when we run the expression for p and n then other

assumptions are there whether the semiconductor is degenerate or nondegenerate or so on.

And then of course in semiconductor material if it is not homogeneous then this epsilon will be

function of position. So, if it is homogeneous for homogeneous you can write epsilon times del

square psi = - rho. And then for homogeneous materials for silicon is the relative dialectic

constant around 11.7, for silicon dioxide 3.9, silicon nitride 7.2 and of course these values

actually vary slightly depending on the processing condition.

So, for gallium arsenic at around 12.5, for germanium around 16.1. So, these are typical value of

dielectric constant. So, here epsilon is epsilon r times epsilon 0, epsilon r is the dielectric

constant or the relative permittivity and epsilon 0 is the permittivity of free space.
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Now another equation that is that plays are all in semiconductor device simulation is the

continuity equation. So, if you recall the Ampere law del cross H = J + del D by del t. So, if we

take del dot of this whole equation then the left side will be zero because del dot del cross of a

vector is zero. So, 0 = del dot J + del by del t of del dot D, del dot D 0. So, del dot J + 0 by d t =

0 this is what we get from Ampere law and of course rho = q times p - n + C.

And now this equation we can write for both electrons and holes. So, for electrons del dot J with

subscript n. Now the charge on electron is - q so you can write minus q times d n by d t is equal

to some constant. Similarly, for holes del dot J + q times d p by d t equal to some constant. Now

this constant is basically related to the generation recombination. So, this is basically related to

generation recombination.

So, you can visualize it like this. If you have this region and let us, say there is some electron

concentration. So, you can write d n by d t is equal to electron entering plus generation minus

recombination. Now what is electron entry? So, let us say this is let us assume this is in x

direction. So, this is your x direction now J at x + delta x. So, let us say J is in x direction, so

number of electron that are entering now this is the for electron.

So, electron means J x means these electrons are leaving and J x + delta x current leaving this

electron are entering. So, this d n by d t will be J x + delta x - J x divided by delta x. So, this will



be del dot J + generation - recombination. So, now this is basically containing charge here so you

can have to multiply it by q. So, here also you have to multiply by q because this for the charge.

So, q times d n by d t = delta J + generation - recombination or you can say net recombination.

So, if you take it to other side so del n by del t times q - del dot J n = - q times R, so this is the

same as first equation, del dot J - q d n y d = q times R. Same way you can write for holes also.

So, this continuity equation which is basically related to the conservation of these carriers can

also be derived from Maxwell's equations. Now once we know these parameters, we can

calculate the current. So, current is given by charge density times the velocity of these carriers.

So, for electrons q times n times V n so V n is a velocity of these electrons. Now we have to find

out what is the velocity of these electrons. So, if we apply electric field if you apply a

temperature some velocity will it will affect the velocity of these carriers and that velocity of the

carries will affect the current flow. So, now the main target is basically we have to relate this

velocity to the fields or the governing external potential or other physical condition.
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So, with this we come to the semi classical transport. Now semi classical transport carriers are at

classical particles which follow the Newton's law of motion. Now these are classical particle

only between the collisions so between collisions not during the collisions. So, you can write



change rate of change in momentum d P by d t is the force. So, force due to electric field is q

times E.

So, for electron you can write - E because q will be - E here and then some random force

function due to other elements present in the lattice. So, these elements can be impurities can be

lattice vibration so these are the phonons. So, we have phonon scattering, your impurity

scattering or there will be crystal defects or line defects. So, different effects are there. So, they

can also player on, it can be due to the surface scattering.

So, there are different mechanism which basically balance this force. So, that when you apply

electric field, the velocity does not go on increasing rather what happens because this electric

field gives the acceleration. So, acceleration means the velocity will keep on increasing. So, this

random force function actually decelerated so that electric field effectively give some drift

velocity or the terminal velocity.

Now P = h bar k the momentum can be written as now this is valid for free electron only. But we

use it inside the crystal structure with little modification that mass of the electron is now M

effective. So, that is basically taking care of the band effect. And of course, if you simulate this

thing for large number of particle because if you see how many atoms are there in silicon crystal

some order of 10 raised to power 22 atoms per cubic centimetre.

So, if you have one cubic centimetre piece of semiconductor there are 10 raised to 22 atoms and

this will have some 14 plus electrons. So, there will be lot of electrons basically and you cannot

track all those particles. Out of the let us say you know one electron per atom is movable still is

10 to 22. So, taking care or tracking all these electrons is impractical. So, what we do?
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We describe or be introduce a constant of distribution function. So, what this distribution

basically tells you is the probability of these carriers at position are with momentum h bar k so P

= h bar k at a given time t so this is the probability. Now if you consider a piece of

semiconductor at position r. Now in this position r at given time t so this will be r, t you can plot

this f as a function of wave vector.

So, at given position there can be you know number of electrons with different momentum or

different wave vectors. And if you integrate this f r k t over d k over a volume in k space you will

get the carrier concentration at position r given time t. So, the area of this curve will give you the

carrier density at position r at given time t then of course the spread will depend on the

temperature.

So, if temperature is small this will be more narrow because this is basically the momentum. It is

related to energy also h bar square k square by 2 M. So, if temperature is high then this will have

a greater spread and if temperature is low then it will have a small spread. Then where is the

peak of this function? So, if you integrate or you get the first moment so that is integral V times f

d k over volume k you will get the drift velocity and the second momentum if you integrate V

square f d k over the volume k you will get the energy.
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So, in the beginning we can think f as a Fermi Dirac distribution. So, all of you please recall,

what is the Fermi Dirac distribution? f d = 1 over 1 + exponential E f - E by k t. So, at E = E f

this is one so this f D is one, one by two this is one by two at t = F it is one by two. And if energy

is less than E f so if E is less than E f then this is positive this would be E - E f. So, if energy is

less than E f this is negative so this term will go to zero so this will be one only.

So, for energy less than E f so this is half here less than E f it is one and more than E f is zero so

if t is small. If t is large then it goes like this. So, your Fermi Dirac distribution is basically is a

function of energy and of course we have a concept of the fermi level. So, if there is a given

fermi level then you can get the probability of electron with energy E as a function of energy.

And how this is function of r, k, t?

Because when we define this parametric distribution, we applied it to whole of the

semiconductor. So, if at a given position if E f is certain value so E f is a function of position so

this is basically f is a function of E, E f which is a function of position and it changes with time

also so its function of time also. So, that way this Fermi Dirac distribution is a function of r, k

and t.

And then from the Fermi Dirac distribution we can calculate the particle density that is sigma f

which is same as integral f d k over the volume for k. And the current density that is q times V



times f d k, q is the minus negative, - E is the charge on electron. So, E V f integral so that is this

thing. So, for discrete state if there are discrete state, we can use the summation and if there are

continuous state, we can use the integration.

And for energy this is half M V square, kinetic energy times f d k so that will give you the energy

density.
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Now for the distribution function let us say you apply certain electric field in x direction. So, this

is let us say k x. So, what will happen? These electrons will move in the direction opposite to the

electric field so each of this electron is the value is let us say k it will become k minus some

small value. So, what will happen? This peak will shift to somewhere here so that this average

will come somewhere here and that will be the drift velocity.

So, this let us call this k d so h bar k d by m = P. So, that is h bar k is P so P by m so this will be

drift velocity, h bar k d by m. So, at equilibrium this is symmetric around k = 0 because there is a

particle with k and minus k and they cancel out so there is no net current flow. But at field now it

is peak is shifted to somewhere here due to the electric field so it will have some average

velocity or drift velocity.



So, when electric field is applied the distribution function is distorted, it is displaced from the

origin and we can calculate the current density from this one. We can also calculate the energy

density for this kind of function. So, in technology at what we do? We solve for this distribution

function f either directly or indirectly. So, either we may solve for the f or we may solve for its

moment like n or J or energy. So, either in terms of this parameter we solve it or we directly

solve for this distribution function.
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So, in this lecture we have derived the Poisson equation, continuity equation and we have

discussed our semi classical transport problem and emphasized the need for distribution function.

Thank you very much.


