
Digital Control in Switched Mode Power Converters and FPGA-based Prototyping
Dr. Santanu Kapat

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Module - 10
Steps for FPGA Prototyping of Digital Voltage Mode and Current Mode Control

Lecture - 91
Steps for FPGA Implementation of Digital Voltage Mode Control

Welcome to this lecture we are going to show Steps for FPGA Implementation of Digital

Voltage Mode Control in a buck converter.

(Refer Slide Time: 00:33)

So, here we will say the hardware setup prototype of a digitally controlled buck converter.

Step for FPGA implementation of digital voltage mode control and the live demonstration of

load and reference transient performance.



(Refer Slide Time: 00:45)

So, if you go for FPGA-based Digital Voltage Mode Control Implementation. We have

discussed this in sufficient detail from lecture number 71 to 74 and then these are you know

PCB picture prototypes that we are going to consider.

(Refer Slide Time: 01:02)

And in this particular demonstration, we are going to consider digital voltage mode control in

a continuous conduction mode or a synchronous buck converter and this PCB is for the buck

converter then the signal conditioning circuit and the Xilinx FPGA that we are using the

FPGA prototype.



(Refer Slide Time: 01:20)

And this is the picture of this you know our setup where you know we are programming

through a computer and this computer that a USB cable is connected and the top part of here

is a signal conditioning board and you can see the bottom part which is FPGA.

So, the signal conditioning board just plugs into the FPGA ok. And this is our power stage

and here we are this probe is used to measure the output voltage and this current probe is used

to measure the inductor current. And this is the power supply you can see it is set Vin to be

3.3 volt. We are applying ok.

There are 2 power supplies sorry 2 supply one is for the buffer like you know op-amp supply

and all this that is for supplying op amp a DC DAC and all and we have used a voltage

regulator in the PCB also. And this particular one is used to use as the input to the DC-DC

converter which is these two points, ok. And this is your current probe that thing this is the

oscilloscope.



(Refer Slide Time: 02:33)

So, here if we take a closer look so, again you can see the bottom one is the FPGA1 and the

top one is the signal conditioning board and this is the USB cable that we are going to

consider and this is our power stage prototype. And this pin we are taking the output voltage.

We can get the output much cleaner if we can tape tap directly from the capacitor output

capacitor.

But just to make it flexible for the demonstration we are using this one. And this is a current

probe that has 120 megahertz current probe and you can see the input voltage is the first

channel is the input voltage, which is 3.3 volt and this one is 10 volt for supplying to the

op-amp ads and so on.



(Refer Slide Time: 03:19)

So, this digital control implementation is what we have kept; that means, I just want to show

you this board we have ADC and DAC though for voltage mode control we do not need DAC

and these data are getting interfaced with the FPGA through this i o plug-in pin. So, this side

also we have and they are going to the FPGA is. So; that means, this i o pin ultimately

whatever is going on is nothing, but this interface and FPGA inside FPGA were implemented

in digital voltage mode control ok.

So, this is the realization where we are using all the inside logic and we have demonstrated all

the Verilog codes and etcetera.



(Refer Slide Time: 04:04)

And we discussed in lecture number 57 what is the step for plugging in this you know this

computer and then how to dump the code. How to compile the code? How do synthesize then

how generate the programming file and how do dump it into the actual FPGA?

(Refer Slide Time: 04:27)

So, these steps are discussed in lecture 57, here we are only recollecting with our code. So, it

is a digital voltage mode control. So, you can see this is the main module which should be

kept at the top module. So, this main module is called the sub-module which is a clock

generator, then a digital PID controller DPWM plus dead time circuit, and there is a user



constant file because this file will link with the actual io pin with their address. After all, we

are taking the clock data 100 megahertz clock through this pin.

We are sending the ADC clock from here we are sending the DAC clock though DAC is not

required. We are sending the high side gate signal it is going to the driver, we are sending the

low side gate signal. We are capturing the ADC data, which is you know 2s complement, Q1

dot 9. We are sending that data, in this case, we are sending 0 data because we are not using

that, but since the design is made we are just making this the in our module.

But we can drop it. This is used for the load transient; that means, the Q load is 1, which

means it will give the load step-up transient Q load 0 means load step-down transient. And

this is to select the transient there will be an external switch if you set it to one position it will

be a load if you set it to another position it will be a reference transient. And all this code we

have discussed in a lecture I think 72 and 73. So, we are not going to discuss again here what

we are going to show the top module.

So, initially before going to implement we have shown some case studies of how to simulate.

Because in lecture number 80, I remember that I think lecture number 80, I think it is not 80

6, 70. I think in lecture 70 we discussed how to simulate you know a PWDM block with a

gate signal and dead time. So, then we have to go to the simulation mode. And we can check

all the timing diagrams.

Once each block is simulated and tested then you are ready to go for the implementation part.

Once you go to implementation you have to make sure which block is your top module. And

then if you select the top module these are the step the synthesis step it will go then the

implementation of the design and the synthesis will generate rtl ok. And the implementation

how this rtl, because Verilog is a platform independent; means, the same code can be used in

a synopsis and another digital tool synthesizes. Design one digital ic.

But when it goes to FPGA. So, this step requires this implementation stage is critical it will

take that i c and route that FPGA pin, because FPGA we have discussed lookup table,

configuration logic block then programmable i o pin. So, all this interconnect of the

implementation will be done in this implementation digitally and we have to be very careful

about this what FPGA we are using.



So, we are using this particular part number of the FPGA of this package this must be

consistent otherwise it will give you the wrong result because this will link it will take the

library of the Xilinx ISE and it will correspondingly take the library of the relevant ic and

then it will make i o interconnection of this. Once it is done then it will generate the program

file and we have discussed that we want to generate a dot bin file binary file and this will be

loaded in using another know software that we have discussed in lecture 57.

(Refer Slide Time: 08:11)

(Refer Slide Time: 08:16)



(Refer Slide Time: 08:30)

So, this is the first step if we show the whole code one by one we are changing only this file

because there is a 4 you know these blocks. So, transient creation. These are called clock

generator digital PID, DPWM, and finally, this is the end of the 4th one it’s the main module.

So, it will be 4 by 4.

(Refer Slide Time: 08:30)

Next, if you go to a separate clock generator. You see this implementation will not come

because it is not the top module, but we have discussed the clock generation block.



So, I am not going to discuss detail. This block we have presented in lecture 73 even we have

presented in I think seventy-seven also for current mode control.

(Refer Slide Time: 08:55)

So, these things we have discussed, but it is just showing the screenshot of the FPGA coding.

(Refer Slide Time: 09:00)

Then we are going to talk about digital PID controllers. This block is also discussed in our

presentation which was probably 72 and 73 we have discussed. 73 was a digital PID

controller.



(Refer Slide Time: 09:14)

(Refer Slide Time: 09:18)

So, we discuss it in detail, we are not going to discuss it again. This is again a sub-module of

the main module, then the DPWM dead type this block we have discussed in the context in

lecture number 70 where we have also simulated; that means if you have a pulse width

modulator and if you compare with the fixed reference, that will generate a duty ratio

command and that can be used to generate your high side and low side gate signal with

suitable dead time. That also we have discussed.



(Refer Slide Time: 09:54)

So, there is a redundant block we are not using digital PSM. When we go to the multi-mode

we will be using this block, but here dead time we have discussed different codes of the dead

time. We have discussed this in detail in lecture number 72 the Verilog code. So, this part is

over.

(Refer Slide Time: 10:02)

Now, the most important part of the implementation is the user constant file and we have

discussed in lecture number 57 how to right-click on this file and add this implementation ok.



(Refer Slide Time: 10:18)

Then once this generating program generation is over, what are we going to do we have to

load to the target device, and that part we will be showing in the live demonstration. How is it

doing and finally, what is happening in the actual circuit?

(Refer Slide Time: 10:37)

And this is the picture of the live demo, but now we are going to consider all the steps that we

have discussed in the live demonstration.



So, now we are going to demonstrate the digital voltage mode control experiment which we

have already presented in class. So, here we have already discussed in lecture number 91

about the steps for know synthesizing we have demonstrated all the Verilog code then we

have told what are the step you know first you have to synthesize and then implement the

design.

So, as if we have all the modules here and you say file dead time digital PID controller clock

generator and the main module. So, we are first generating the program file we will rerun it.

And this is the Xilinx ISE software tool and we have already discussed what device we are

using everything in detail. Now, you see one by one the stage is executing like synthesis is

over then now it is going to implement.

So, the synthesis will generate RTL logic then implementation will try to map into the target

FPGA device, the SDL code. That is over now once it is generated it is generating the dot bin

file, which will be dumped into the FPGA. So, now, that stage is coming. So, now, we are

going to. Once, this process once it is over now we are going to this Mimas FPGA

configuration tool we have already discussed the steps and we are taking the file dot bin file.

(Refer Slide Time: 12:14)

So, this is the voltage mode control file you can see the dot bin file. Once you select it will

show that it is selected dot bin file now we are going to program. So; that means, the well

selected file is DPWM underscore VMC dot bin now it is programming the bin file is getting



programmed into this FPGA device. So, it is dumping. Once it is dumped the code is dumped

then it will verify once.

(Refer Slide Time: 12:45)

And then you know there is a red light at the bottom. So, it is not visible from here, because it

is in between two boards. The top board is our signal conditioning board, the bottom is

FPGA.

So, if it is FPGA you know red led light which will display when it is dumping is over. The

led light will stop now it is showing the program dumping process is going on. So, now, it

will verify the process; which means, whether it has been correctly dumped or not. So, that is

the final stage. Once it is over then we will move to we will turn on the power supply.



(Refer Slide Time: 13:22)

Now, we are going to turn on the supply. So, first, we will turn on the second supply that is

the powering for the signal conditioning circuit, then buffer circuit IDC and all these, because

we have ldo in the board which will generate derive all the required power supply from this

10 volt. Now, we are turning on the main power supply which is the input voltage of the buck

converter and as we have discussed we are taking 3.3 volt as the input, but you can also

increase the input voltage if there is no problem.

Now, we are going to first set based on the trigger. So, it is I am just showing here the load

transient response. You know the load transient response. We have not yet designed the

compensator properly. We have chosen some value, but for the given value this is the

transient performance and in the 11th week we are going to design first we need to validate

how to realistically model our MATLAB model to match closely match with the experimental

result whether they closed or there is a deviating we will also show the validation process.

And there followed by that we will show the design step, but here imagine that we have

somehow designed the controller and the controller values are already displayed you know

we have shown them in class. Now, with that controller value, we are making a load transient

where the resistance is initially it was connected you can see 13.5 ohm resistance now this

RSW which is 0.33 ohm that is connected in parallel here. As a result, you can see a load

step-up transient.



So, if we know to stop it this is the step-up transient where the load step is happening here

this is the undershoot current overshoot and then there is an overshoot due to the load steps

down transient. Now, we also have and we have discussed we have shown this you know we

are going to show the results in more detail in the subsequent lecture. We also have a

provision for changing to reference transient.

(Refer Slide Time: 15:24)

So, there is a switch and we have discussed there is a called switch called for, which will

select the transient type. So, when it is 0 that will take the reference transient when it is 1 or

vice versa, sorry it is 0 means load transient, and 1 means reference transient. So, here we are

showing the reference transient. So, first, it is stepping down; that means, it was 1.1 volt you

can see 0.2 volt, 1, 2, 3, 4, 5. So, this is the 1 volt. This is 1.1 volt, then it is going down to 1

volt then again it is going to 1.1 volt.

So, there is a periodic reference state transient which is happening from 1 volt to 1.1 volt and

back to 1 volt and so on and this is the response. So, now, we have shown how to you know

to run this voltage mode control now if we increase the input voltage accordingly you know

you can check the waveform and how it is getting affected and we can design for various

input voltage conditions and we will discuss the design process in the subsequent lecture.



(Refer Slide Time: 16:32)

Now, we will move to the class. So, now, we have just concluded our live demonstration and

we want to summarize that we have discussed the hardware setup prototype digitally

controlled converter. We have shown steps for FPGA implementation of digital voltage mode

control and we have also considered a live demonstration of load and reference transient

performance that is it for today.

Thank you very much.


