
Digital Control in Switched Mode Power Converters and FPGA-based Prototyping
Prof. Santanu Kapat

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Module - 08
Digital Controller Implementation using Fixed-Point Arithmetic and Verilog HDL

Lecture - 73
Digital PID Control Implementation using Verilog HDL Programming

Welcome to this lecture we are going to talk about Digital PID Control Implementation using

Verilog HDL Programming.

(Refer Slide Time: 00:31)

This is the continuation of the previous lecture where here we want to emphasize especially

on the PID controller part. So, we will take PID control implementation and Verilog coding.



(Refer Slide Time: 00:44)

(Refer Slide Time: 00:52)

First again we will recall that in our digital voltage mode control where we are considering

only this particular part; that means if we take the overall block that we want to design for

this digital controller we know there are some modules and we are only emphasizing the

digital PID controller. So, this part we are going to highlight.

So, in this part, the main module again is a main module digital you know main module and

we just want to highlight our I would say the voltage PID controller part. So, the main



module again is calling DPWM DAC clock all these interfaces we have discussed in the

previous lecture.

(Refer Slide Time: 01:31)

Now, we want to emphasize this particular block, what is the input to this block? So, if we

consider this digital PID controller I am talking about; that means, a PID ok. So, it is a digital

PID controller what is the input? So, one input is your error voltage which is N e and it is in

the format of Q 1 dot 9.

What is the output of this controller? It is the N con that is the controller out and we will

decide what is the size of this controller output, but what else do we need? So, we need all the

parameters K p we need K i we need K d, and what else do we need? We also need f s w for

this block because when you calculate if you remember that you know derivative control, for

example, K d we know that N e minus.

So, if you take the n-th cycle minus N e n minus 1; that means, there has to be a delay so;

which means, this delay has to be generated concerning the switching frequency clock that is

why we need a switching frequency clock for the synchronization also for the integral control

we need the additional block like a previous value we have to add is an incremental integral

control implementation. So, for that kind of summation, we need to synchronize with the

switching frequency clock so, that is one of the inputs.



We can provide other input like a flag; that means, if there is saturation in the PID controller

then the flag can be high. So, you can always add an additional thing, but these are mandatory

requirements.

(Refer Slide Time: 03:40)

This is the overall PID controller simple implementation we did it in MATLAB, when you

say this block the delay right? So, this delay again this delay which should be with respect to

the clock we have discussed this delay as a register and this register will be synchronized

with the switching frequency clock. And this register will have data in again this is vector

data and you will have data out the size of the input and output vector are the same and the

data size will define the size of the register which is an 8-bit register, 6-bit register, 10-bit

register whatever.

So, the same thing we have we require for this register and we have discussed in MATLAB

how to build the custom model using difference equation rather than using plugging in any z

transform or any transfer function that also we have discussed customized.

And in the subsequent maybe towards the end, we want to see if we have a realistic

MATLAB model and then an actual experiment and then how close they are there, they may

not be closed, but how far I mean what is the deviation, how much they can capture the

transient behavior. So, with we want to discuss this aspect as well.



(Refer Slide Time: 05:10)

(Refer Slide Time: 05:15)

So, here is the main module again it is the calling that we have discussed, but now where to

sign parameters have been defined. So, this up to this point is a main module declaration we

require because you need to see the values of the parameter that is the part of the main

module the N out and K p K d ok.



(Refer Slide Time: 05:36)

Now, this module was called if you recall in the previous lecture we have instantiated the

module name digital PID controller, now we are talking about that particular module. What is

the input to the module? We have discussed that input to the module is a switching frequency

clock. This is the error signal local error signal we have discussed, this is the controller output

and these are the parameters K p K i K d.

And we discussed that these are the bare minimum requirement; that means, we need error

input, and in this case, this is the digital representation of this. We need this parameter which

is this, this parameter which is this, and this parameter which is this right and we need this

output which is this right and we need all these registers to be synchronized with respect to

this clock. So, this clock will be used to generate this delay it has to synchronize.

Next, we have to define what is input, and what is the output. We know that the input is a

PWM switching clock and there is a scalar, but there is vector input like error voltage K p K i

K d, and all we are writing in 10 digit number, but their Q format is different. So, for error

voltage, the Q format is Q 1 dot 9, for proportional gain we took Q 4 dot 6, for integral gain

we took Q 1 dot 9 and for the derivative gain we are taking 4 dot 6, which means all numbers

are 10-bit number 10 bit signed numbers they are represented by the same vector size, but

they are Q formats are different.

And we have discussed that if you multiply and add some different formats of numbers we

need to synchronize, we need to scale, and normalize them otherwise you cannot add. So,



their Q format must match. Now, the output signal is the control output and you can see it is a

19-bit number.

So, it is a 19-bit signed number, but we are here to define what the sign is as a signed number.

So, we are internally variable some temporary value ok. So, we can check and see whenever

we multiply let’s say we multiply K p into N e K p is Q 4 dot 6 then this is Q 1 dot 9 and we

call this to be N proportional temporary and that is why you can see their bit size is 19

because their size will be Q 5 dot 15.

But what is the problem, each of these is the sign bit and if you multiply by to sign bit

number then resultant there will be 2 sign bits; that means, one you can discuss. So, this will

be normalized to N proportional which will be in the Q 4 dot 15 format. So, it is a 19-bit

number and that is defined here all this 19; that means, this is the resize data of the

proportional term and we will talk about resize rate of the integral and the resize data of the

derivative will come to that point.

So, then these are all internal declarations we also need a previous value of error voltage

because error voltage we know N e r. So, this is the error; that means, we have N e r which is

an error that is Q 1 dot 9 and we also need N e r previous which is also Q 1 dot 9 because for

derivative control we know that. So, the derivative will be K d into N e r minus N e r

previous. So, we need this precious and that is why we have declared wire sorry register

because we will make just a shift operation and that we will discuss.

(Refer Slide Time: 10:17)



Next, we are computing the derivative action because we have to create a previous value and

that is happening with respect to the switching frequency clock, all these previous updates

will happen concerning the switching frequency clock because the datasdatacaptured output

data are captured with respect to the switching frequency clock. So, with that clock we have

and we are calculating the error at that clock only and we are calculating the previous error

with that clock which is why the always block is there.

So, always derivative term which is K d into N e r minus N previous, what is N previous?

After that, here we are using a blocking statement, you can use a non-blocking statement

there is no issue, but I just want to avoid so; that means, this line will be executed fast, and

then this line so; that means, in the first line it will take the previous value which was stored

in the previous cycle.

Once this computation is over then the instruction will come to this and then it will take the

previous will be storing the present value at this point of time then this process continues

when the next cycle will come N e r will be updated with the new value, previous will be

storing the previous N e r value and the action continue and these things we know. So, this is

clear.

But now this one since we are multiplying K d to be Q 4 dot 6 and this whole operation is Q 1

dot 9. So, then the resultant here will be Q 5 dot 15 and we are resizing the proportional

control. What are residing? We are simply discarding the 19th bit; that means, this is another

MSB discarding because 2 sign bit 2 MSBs sign bit. So, we are discarding the MSB.

Similarly, we are resizing this bit also and we are also resizing the derivative by discarding

the MSB. So, these are all things that are resizing I will say resizing by discarding the

redundant sign MSB bit ok. Then here we are doing integral control. So, if we go back to the

integral control you will see yeah. So, this proportion we have discussed will be Q 5 dot 15

because this guy is what Q 4 dot 6 and this guy is Q 1 dot 9.

What about this? Q 1 dot 9. So, what will be this? It will be Q 2 dot 18. So, we need to resize;

that means, we need to resize because we know that u I of n will be u I of n minus 1 plus K i

into v error. So, we are writing in me because here it is N e and that we did in the previous.

So, this is the operation K i into N e which N e r is the error voltage and we are resizing this

because we need to resize.



Then, now again integral has to be computed because you need a previous value. So, first, a

temporary variable and this one is already there and this is another temporary variable. So,

you can think of a previous value. So, this will be N integral previous; that means, you can

think of this as like N integral previous. So, this is loaded with the current value; that means,

whatever we will do to calculate in the same cycle after this line is executed we will take u n

minus 1 as equal to u I n, and then the cycle continues.

So, these values will be now stored as a previous They will be used in the next cycle

operation and this is exactly happening inside this block.

(Refer Slide Time: 14:38)

Then once you have done then the actual instantaneous integral value we are you can see

what is the size of this data, we have made Q 1 dot because if we remember that this is 2 dot

18 we have resized it to Q 1 dot 18 this is 2 large data.



(Refer Slide Time: 15:24)

So, we have integrated into the stance you know I would say instantaneous value or this stem

ok may be. So, here are all internal variables named 4 this is in the format of Q 1 dot 18 and

we have N proportional in the format of Q 4 dot because after resizing 15, we have N

derivative which is in the form of Q 1 dot 15. So, we cannot add them.

What do we have to do? First, this data we have to pair with that we can make sign bit

extension; that means, we have to extend this sign bit 3 times because we need to make it 4

we need to convert this into 4 dot 15, and then we can discard 3 LSB because it is up to 18.

So, you can discard it because otherwise we cannot resize or we can pair it with 0. So, there is

no point can discard it. So, either you can discard this or you can resize, if you resize adding

another three zeros size will go up. So, it is a designer’s choice.

So, you are padding with 3 sign bits. It could have been 3 you know N this sign bit, but for

some reason actually, the Verilog was giving an error. So, I have manually made 3 sign bit a

concatenation operation and here I have discarded 3 LSB so, that this number now becomes

Q 4 dot 15.

Now, we are making it a saturation limit there is a high chance the integral gain will saturate

because it is a sign number. So, if this number exceeds some upper limit which again is

defined as the upper limit is defined as some number. So, I can set some number it is your

choice, I am not going to the full upper limit of the dynamic range leaving one space down



that is the upper limit if the integral gain reaches that then we will simply set the maximum

value otherwise it will take the current value.

You can also set the lower limit as well no problem once this is the actual integral gain

coming from the saturation block; that means, we are putting an upper saturation limit lower

as if we are not putting, but we can put it and this is my N integral before that it was N

integral instantiation flow.

Once it is generated now we are adding it. So, this is this particular value N proportional, we

are adding N derivative and this is my N con, since this number is 4 dot 15 this number all

are 4 dot 15, 4 dot 15, I am also taking 4 dot 15, but there is a possibility that there can be

overflow. So, that can be taken care of, but otherwise, it is a 4 dot 15, it is a 19-bit number

which is why what is going out is 4 dot 15.

So, here you know again you can take another. So, it makes a little bit complex, but it is

unlikely that all will add up and exceed, but there may be possible if your gain is high,

otherwise, they will come under this 4 dot 15.

(Refer Slide Time: 19:00)

So, in summary, we have discussed digital PID control implementation and we have also

discussed Verilog HDL coding for digital PID control implementation. And we will discuss

the light demonstration of this PID controller that transient response in the subsequent lecture

and that is it for today.



Thank you very much.


