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Welcome. In this lecture, we are going to talk about Top Down Design Methodology in

Digital Voltage Mode Control. This is the continuation of the previous lecture.

(Refer Slide Time: 00:33)

In this lecture, we are going to talk about Top Down Design method and then Verilog HDL

coding for the overall Digital Voltage Mode Control.
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So, here, again we will recall our digital voltage mode control implementation of the

architecture that we have discussed.

(Refer Slide Time: 00:47)

Then, we are about to design the whole digital control module that we have discussed. And

we have discussed that this is a main module and it consists of 3 submodules. One is the

clock generation, the clock generation, the other is the digital PID controller and the third one

will be DPWM plus your dead time circuit, ok. So, now, let us start. So, this is the overall

block that will look like this, the internal architecture of this block.
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So, first, we will start with the main module. So, again we start with the Verilog module. And

now the code will continue. So, first, this is the name of the module which is the main

module.

So, I will say this is the main module. And when we go in the next week or the subsequent

lecture, that is the step-by-step methodology of implementation and hardware demonstration,

we will talk about this require a user constraint file, and how to do it because we want to

show using our actual Xilinx code we want to show a live demo regarding that Verilog

implementation in the subsequent lecture.

But this is the main module. Today in this particular week we are talking about how can we

use write Verilog code for this implementation. But while we will be demonstrating the live

demo of digital voltage mode control, then we will say what other files are needed. So, there

is a clock which we represent, so this clock is nothing, but this clock, ok. Then, we also need

something like an ADC clock, this is here. We are giving a DAC clock because in our setup

we have DAC.

So, DAC clock you may or may not provide or you may not use DAC data, because for

voltage mode control we do not need D to A converter. But when we go to the current mode

we will use that. So, I am just keeping you know this particular line in mind. So, this is not

used. I would say this is not used. So, I can drop this. We are not using this, not use here. We

have just used it because it is where it exists, but we are not utilizing it. I will say not

required.



PWM high is the high side gate signal going to the driver. PWM low is the low side gate

signal going to the driver. ADC data is the data coming from ADC and this is a 10 bi10-bit Q

1 dot 9 format. We have discussed this. DAC data we are sending 0, just so you know we

may or may not say because we do not need DAC we will not use it in this voltage mode

control.

Q load is going out. This is the Q load, the Q load which is here, ok. And Q L R tran which is

here. That means, it is input on what kind of transient you want, do you want a reference

transient or load transient, we will discuss this. Now, we have to declare in the Verilog

module which is the input, which is the output. Even among input, so the clock is the input, Q

L R is the input, but these are the scalar input, these are the scalar input, sorry, scalar input.

These are the scalar input. There is vector input also, a 10-bit vector and it is a sign. So, we

have to define the ADC data.

The output we have is clock ADC, clock DAC, PWM high, PWM low, and Q load. There are

so many out output, output, output. We are sending an ADC DAC clock that may or may not

be needed. But the output of the ADC that we are giving out, sending out data for the DAC

here we are not using it, but we can give send some random data unless you know as long as

it is not if the part of the loop does not matter. But it is a vector, 12-bit data.

And remember, it is a 12-bit offset binary that we will be using, offset binary. And this is 2’s

complement, ok. And this also has like a plus minus 1 volt, but in offset binary and this is

also Q 1 dot 9 format, ok.

(Refer Slide Time: 05:44)



Next, this is the continuation, the code is continuing. So, we have declared the ports, all the

ports. That means this part is called a port declaration. Now, we are going to the declaration

of wire and register because internally we are using some register or some wire, and we have

already discussed this. So, some of the register N out, because N out is a register, because this

we are using for capturing the output data from the available ADC input. Because we are

taking data from ADC and I told you that ADC data is coming at the rate of 25 megahertz

rate; that means.

But we need to get the output sample where we want it. Though it is a sample somewhat

earlier, we want to get the data synced, we want to load our register at some instant in time.

Then we need to define the error voltage which is why N e wire and N con which is the

controller output a 119-bit sign number. Then, we are also defining f PWM, that is, this is

denoted as a local variable for frequency, switching frequency. It is not going out or coming

in, but this is used internally using as a switching frequency.

So, all the gate signals will be generated in synchronization with this PWM as well as the

controller computation will happen at this, with this clock, synchronize with the clock. We

are using 3 K p, K i, K d. So, K p like a proportional control, K i and K d are integral and

derivative controller gain in discrete domain remember. And this we are defining as a

parameter which is a signed binary, 10-bit sign binary. So, when we say 10-bit signed binary.

So, it is a 10-bit, s indicates a signed number, and b indicates binary, ok.



And we are giving some value, what is the format you define? Q 4 dot 6. Then, what is this

value? This value will correspond to the 2 to the power 0 bit. So, it will be 1 plus the first

digit is 0.5, this is a 0.25, so 0.25. So, you are using K p is equal to, and K p is equal to 1.25.

This is in the actual number. And we will discuss how to select K p, then we have a

step-down factor.

So, we will take the design case study in the subsequent week. But here whatever value will

come from the design we can simply plug in. Integral gain, again we are taking integral gain

and this is in the Q 1 dot 9 we have discussed. That means Q 1 dot 9 means this will be 0.125.

So, correspondingly you can get the value, you can convert this data.

The derivative gain, we are taking, is the first of these 3 cases the first MSB is 0 because it is

a signed bit. We are talking about the positive coefficient of the controller. So, all the bits will

be 0, all cases the MSB will be 0. Then, the other bit if you see it is approximately equal to 8.

So, using K d to be 8, but remember these are the control value where there are other scaling

factors. So, it is not actual, if whenever we did the MATLAB simulation, we have not

considered the voltage feedback gain, current feedback gain, and other factors. So, we have to

consider it.

Now, we will bring back our MATLAB model again and we will put those real scaling factors

and want to simulate, and in the subsequent lecture, we will see how the simulation result,

whether it is different from the experimental result or they are close. So, you want to discuss.

But these are the values.
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Then once we have to also differentiate this is the parameter, N ref nominal, this is the

reference voltage, one is the nominal value, another is the delta. So, it is you can say V ref

nominal corresponding voltage will come from this Q format. It is Q 1 dot 9 format this is

also Q 1 dot 9 format. So, you can get the analogous reference voltage and nominal.

Similarly, this will give you delta V ref. Again in Q format. So, why do we need it? Because

you remember that in Simulink we use a step command, right? So, here it is like a V ref to V

ref plus delta V ref. When do you want it? If you want to make a reference transient. So, this

is possible that we can make a reference transient and we want to check the response, ok.

So, the actual reference; means, we are using a mux here, mux here, where this will be our V

ref and this will be V ref plus delta V ref. The summing block is 0 or 1, whatever, and this is,

so this is like a nominal value. So, this is the actual V ref. So, that means, the reference which

is coming out, is a mix of nominal value, nominal plus delta V ref. So, we can make a load

reference transient, that is why we have to use a wire variable and so N ref temper, you know

temp what is the temporary value. So, I will go with these for internal definition.

Now, at always at the switching frequency clock; that means, whenever the switching

frequency clock will come, this is my fsw clock. In this edge, we are capturing the data

coming out from the ADC, and this data we are talking about N out. That means N out is

captured from ADC data. That means, N out is the data coming from ADC data at some

instant of time that is defined by the activity at the edge of the fsw clock; that means, it will



only take, that means, a clock-synchronized operation. So, it will take the ADC data, only at

the edge rising edge of the switching frequency clock.

Now, we made some concatenation. So, we made some concatenation; you know we have

con where so ADC data we know that. What is the ADC data? It is in Q 1 dot 9 formats. That

means it has a total of 10 bit. The first bit is a sign bit and all other bits. But we are capturing

Q 1 dot 8 data first and padding with a 0. So, we are intentionally reducing the LSB and

padding with 0, so that we want to decrease the resolution. Why it is needed?

Because in digital voltage mode control, we need to make sure the resolution of the DPWM,

should be finer than the resolution of the ADC and that is why we are discarding bit, it is

10-bit data, ok. So, that is why we are padding. Even if we want to lose two bits, then what

we will do? We will do N out; two bits if you want to lose the concatenation will do ADC

data, we are taking from 9 if the MSB 2 2 and padding with 2 binary digits 0; that means, 2

bits are 0. So, this is the 2-bit number binary number 0.

So, padding with 0, means, we are losing 2 bits. So, these things are possible. And then once

this is done, so this will be a register because it has to store the value and will only take at the

edge of this clock signal, so that is why it is defined as a register variable here. In the

previous example, we mentioned. So, this is the register variable, ok. And error voltage is a

reference minus N out. How are you getting references? I am going to that point.
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So, we are now this code is continuing. You know we may provide this full code in a one

Word file or maybe a PDF file, you know because this is just breaking the code into because

in one slide it is difficult. So, in the clock generation circuit, clock generation, we have to

give the instant name, and the clock generates is a module name. And we also know that

when you instantiate a module, inside a module, we can instantiate the module instantiation

by name.

So, that is why the dot is coming where the actual clock generator module will have the

variable input-output port name f underscore clock, f adc clock, and so on. We will go to that.

And these are the local variable because, in the main module, we are taking the switching

frequency clock sorry, the digital controller clock which is this clock that clk. So, it is

connecting. That means, the clock generator takes this clock as the input and it is generating

the output ADC clock, DAC clock, and the switching frequency clock and this is the local

value.

Then, DPWM, the module name is this, and the instant name is this. And then again the dot

means we are instantiating by name and these names are consistent with the module

input-output variable name and these are the local variable, ok. So, for the digital PID

controller N er is the name of the input signal vector which is the error you are connecting

with the error of this main module’s local variable. Similarly, the controller output K p, K i, K

d. So, this naming part we have already discussed in the I think previous week, where we

have discussed in detail the instantiation tile and all.

Then, we are also instantiating another module called DPWM underscore dead time because

we discussed that we need to consider a top-down design methodology where the main

module will be broken into 3 pieces. It will call, we will create one submodule of the clock

generator, one submodule of PWM digital PID controller another submodule of DPWM plus

dead time. So, this is the circuit.

And it again takes one of the inputs as a high-frequency clock because this clock is needed to

adjust the dead time. After all, we can increase our resolution of the dead time defined by the

high-frequency clock, that is our 100 megahertz clock. So, we can change the number of

clock units concerning this clock. That means this clock period is 10 nanosecond. So, we can

change the dead time in the order of 10 nanosecond. That means, 10, 20, and 30, but we

cannot change it to 15 nanosecond, because the 5 resolution clock is not available, ok.
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So, now creating an event, in the main module we want to create a transient event. So, we are

giving 100 cycles. It can be 500, it can be 1000, and it is user-defined. How does it operate?

So, first, we have to define a counter, the counter is getting updated. Then, the transient

register, ok, and the transient type, where, again it is user defined whether you want to define

it to be load transient or reference transient.

And we can have given transient type from the external. So, when I will go to the live demo, I

will show you a switch that can be placed in either the 0 or 1 position. If you set it to 0, it will

make the load transient. If you set it to 1, it will make reference transient, ok. So, our

transient type can be set from the outside or you can define it inside. The only issue is the

inside because it takes time to you know to compile the code and again load it to the target

device.

To avoid such kind of multiple-time loading and you know kind of compilation we can

simply provide an interface switch so that you can change it. And it will happen in real-time.

Then, we are using a PWM clock edge. That means, we are using the switching frequency

clock edge sorry, we are using this switching frequency clock edge which is like this. So, this

is my fsw clock. At the edge, we are incrementing like a counter is incrementing like this.

When a counter hit the half value of this then the transient up to that point will be 0. That

means, as long as, that means, we are making like this kind of staircase, like up to full value.



When it makes hits the transient type will be 0, then it will be 1, 0, 1 like that. And this is my

Q tran and we are using it for load transient.

That means I will show you if it can be a load or referenced. So, we will make 50 cycles in

one condition, and another 50 cycles in another condition. If it is a load transient 50 cycles of

one load resistance, then another 50 cycles of another load resistance, the combination.

If you make a reference transient, 50 cycle V ref nominal, another 50 cycle V ref nominal

plus delta V ref, ok. So, this is fine, so Q 0 or Q 1. If it is this, else what will happen? Else,

you know it is continuing; up to this point when equal, all will be equal. We will not update

the counter, the counter will be reset.
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Else, we will do this to be 1 and then this N, so we can make also N ref; that means we are

just updating. Now, the load transient command which is going out there is a Q load, Q load.

Now, this Q load we are generating by muxing. This is my Q load, 0 and 1. If it is 0, then it

will take Q tran. What is Q tran? It is a register. So, Q tran means for 50 cycles it will be 0, 50

cycles it will be 1.

So, that means, Q load will make a load transient. And there is a select line, we will come to

that. The rest will be 0. That means if you set the select line which is the Q tran type. If this is

set to 0, then it will make a load transient because the Q will depend on Q tran and which will

change in half of this 50 cycle sorry; we have defined the total cycle to be 100. So, the first



50 cycles will have a Q load will be 0, and the remaining 50 cycle Q load will be 1 because it

is connected to the Q tran.

But if this transient type you know if this transient type is set to 1, then there will be no load

transient, it will be connected to this point. But in that case, we will be, that means, this is the

command of the data flow modeling of this mux. Similarly, here we are making N ref. So, N

ref again we are making like this 0 and 1. So, 0 means it is your N ref nominal, and 1 means

we are making are getting this value plus there is a delta N ref.

And this is your N ref. And again the select line is Q tran type. So, if the Q tran type is 0, the

reference voltage will be fixed. If the Q tran type is 1, then sorry there is another layer. So,

here is another layer which is Q tran temp, which means, it will be N ref temp. What is this?

N ref temp you can see, for the 50 cycles it will be nominal value, another 50 cycles you see,

for the first 50 cycles it will be if you go back, the first 50 cycles it will take the nominal

value, remaining 50 cycles it will take nominal plus delta N ref.

So, this is the changing variable concerning 50 cycles, 50 cycles, but this is a fixed value. So,

if the Q tran type is set to 1, when the load transient will be 0, there is no load transient, but

there will be a reference transient. So, this arrangement is made to make sure that switch is

placed to see either load transient or reference transient. So, you can change it, it is a

user-defined thing. So, you can change it. Then, assign the DAC type. We are just sending 0

data. I mean this is what we are not using in DAC.
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So, clock generator circuit. Now, we have instantiated this clock generator circuit. And this

lecture we are only talking about clock generators because we have already discussed the

DPWM dead time in the previous week, ok. So, we will be discussing digital PID controllers

in the subsequent lecture. So, here we will only talk about the clock generator part.

So, what is a clock generator? If you go inside it takes input as a main clock which is a 100

megahertz clock and output as an ADC clock and DAC clock and switching frequency. It is

just a counter. So, if you set this number to 500, 499; that means, we are 100 megahertz

clock, it is my f clock, which is 100 megahertz. And I want to switch the frequency clock to

200 kilohertz. Then, what will be my N sw which is nothing but f clock divided by you know

fsw? So, it will be 500. Did I set it to 499, why? Because it will count from 0 to 499, so, as a

result, the total number will be 500.

Similarly, I want a dc clock to be let us say 25 megahertz. Then, what will be N adc? It will

be f clock divided by f adc, and that is 4. And I said 3 because it will vary from 0 to 3. That is

it.
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So, you need two counter and you take the first clock, set it, I mean just for 10 cycles, then if

it is equal to switching clock. That means we are making suppose, if this is your

high-frequency clock let us say you know, so dot, dot, dot. So, if this number is 10, that

means, if this is your 10th number, this is your 10th cycle f clock. So, my switching clock



will remain high up to this, then it goes low, and if it is repeated. So, here we are making like

this. So, this is your switching frequency clock.
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Now, we can generate the ADC clock. So, it will count from N adc, up to that. So, it will first

clock this, then next clock this, like this. This is an ADC, whereas, this clock will be again

this clock like this, ok. Maybe my drawing is not perfect. So, you can try drawing. So, maybe

we can erase this whole part. So, first, it will be high for one complete pulse, then 1, 2, 3, 4,

again at 4th time it will be 1, and so on. So, it will be divided by 4 clocks. So, it is a clock

division.
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So, in summary, we have discussed the top-down design method for digital voltage mode

control. And we have also discussed Verilog HDL coding for overall digital voltage mode

control. And in the next lecture, we are going to talk about Digital Voltage Mode Control you

know Verilog HDL Implementation. That is it for today.

Thank you very much.


