
Digital Control in Switched Mode Power Converters and FPGA-based Prototyping
Prof. Santanu Kapat

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Module - 07
Introduction to Verilog and Simulation Using Xilinx Webpack

Lecture - 68
Fixed Point Arithmetic and Concept of Q Format

Welcome. In this lecture, we are going to talk about Fixed Point Arithmetic and the Concept

of the Q Format. This lecture is the continuation of the previous lecture.

(Refer Slide Time: 00:34)

In this lecture, we want to again consider the binary number system and we try to link how

this binary number system can be linked with a real voltage when we are dealing with a 2D

controller that is a gateway that represents a binary number and the analog voltage.

Then, what is the concept, how can we generalize such number system representation and

equivalence between the analog voltage, and how can we link with a generic form so that you

know we have to because, in the FPGA implementation, we will deal with a different type of

coefficient of the controller. So, how can we make a generic representation that is called Qs Q

format?



Then what are the rules for addition, subtraction, and multiplication in Q format finally, we

will take an example of an arithmetic operation in Q format.

(Refer Slide Time: 01:24)

So, if I go to the fixed point arithmetic let us consider a 2 plus 2-bit number, basically it is a

4-bit number. So, that means, in the 4-bit number I can write something like this; means, I

can write b 3 into 2 to the power 3 plus b 2 2 to the power 2 plus b 1 2 to the power 1 plus b 0

2 to the power 0. This is one way of representation.

Now, I can also write in this way; that means, this b 3 to b 0 is the; that means, we have a

number which is b 3, b 2, b 1, b 0. And, in this way, if we write a straight; that means, you

know N x in decimal what we will get? So, it can vary N x decimal, it can vary from varies

from 0 to what? What is the maximum number? This is like 8 4; that means, it is 31 sorry, 15

because it is a 2 to 4. So, 0 to 15 that is varies between 0 to 15. So, if all are 0bitst, then it is

0. If all 1 it is 15.

But, we can also write another representation let us say. Suppose we write b 3 into 2 to the

power 1 plus b 2 2 to the power 0 plus b 1 2 to the power minus 1 plus b 0 2 to the power

minus 2. Now, how is it coming? You can think of the same number I just represented with a

scaling factor.



(Refer Slide Time: 03:50)

So, let us say we are talking about a scaling factor. What is the scaling factor? That means I

can continue the same number here because we want to write the same number N x in

decimal the same number with a scaling factor. What is the scaling factor? So, here N scale is

equal to 2 to the power 2 because if you multiply 2 by power 2 these two are the same

everything same. So, I took 2 to power 2 out. Now, why it is needed I am coming to that

point.

(Refer Slide Time: 04:21)



So, I would say this to be this number I can say like an N y in decimal. So, N y in decimal is

a scaling factor multiplied by N x. Sorry, I am writing the other way around. So, it should be

N x, it should be N y and this scaling factor can be different. So, the beautiful thing here is if

I write in one case b 3, b 2, b 1, b 0 it looks all like an integer.

In the other case you see from here from this point or not, it looked like a fraction; that

means, in the other case b 3, b 2, b 1, b 0. So, that means, in the first case from this point or

not decimal starts, but there is no decimal. But, here we have inserted a decimal concept; that

means, when you write about decimal numbers in the binary sorry in fractions it will be like a

b 3 b 2 dot b 1 b 0, it is something like this. It is a dot; that means, it is a fraction position

here.

But, the fixed point will never see a fraction it is just a 4-digit number, but you can either

represent it in this N x form or N y form, it is a notional concept. But, the question is why do

we need so?

(Refer Slide Time: 06:17)

So, let us go to that number and let us consider this ADC. Suppose, this ADC let us say we

are talking about the first unsigned number. So, let us say it is an unsigned ADC or I would

say it is in the format of a straight binary assumption. So, this is an assumption, ok. What is

the minimum value? Let us say it varies between 0 volts and it varies between 2 volts; that

means, we are dealing with an analog signal where this is the analog signal is an analog input

and we are getting a corresponding output.



Now, I want to write this data in such that I will get the quantized. So, last time what we did

do? We did that quantized V a to be what? The quantized V we got is a V span divided by 2

to the power N bit multiplied by N x that we have written. So, here this whole thing we want

to write as if in terms of N y in decimal, right? So, this is in decimal N y; that means, how it

is possible?

So, let us say whatever our N x our N x is it is a 4-bit number. This 4-bit number varies

between b 3 b 2 b 1 b 0. And, then what is N x? So, N x is basically what is N x. N.x is b 3

into 2 to the power 3 plus b 2 into 2 to the power 2 plus b 1 2 to the power 1 plus b 0 2 to the

power 0. Now, what is N y? N y will be N x multiplied by what is my V span it is 2 volt

dividvoltsy 2 to the power what is the bit size? 4; that means, it will be N x into 1 by 2 to the

power 3.

Then, how do you represent? So, I can represent this like b 3 into 2 to the power 1 plus b 2

into 2 to the power 0 right 2 to the power 3, ok. Then b 1 2 to the power minus 1, it is divided

by 2 to the power 3.

(Refer Slide Time: 09:30)

So, it should be 0 sorry, minus 2 plus b 0 2 to the power minus 3. So, this is my N y. What is

the difference between this number and that number? What is the difference between this?

What is the difference? What is the difference? The only difference is that the power of 2 to

the power 3 whole thing we have multiplied with a factor which is 1 by 2 to the power 3; that

means, N y is this and this is called Q format.



So, here it is like 4 Q dot 0; that means, virtually there is no fraction; here it is like Q there is

only one integer bit all fractions. So, it looks like Q 1.3. This is called Q format where there

is no physical. You will only see b 3 to b 0 all like a number system because you are only

accepting data which only takes between all like a 4 different bits and each bit can take only 0

and 1, that is it.

But, we want to represent how this output can be mapped to the analog voltage. So, for that N

y is nothing, but your quantized V a straight away and this is in the form of Q 1.3 it is an

unsigned number. In the case of Q 1.3 you know the first bit is the MS first bit is MSB; if all

bits are 1 because a first bit can take only 2 to the power 0; that means, it can be 1.

But, if all other bits are 1, that means, it is almost close to 2; that means, if you make all bits

to be 1 it will be 2 to the power 0 plus 2 to the power minus 1 plus 2 to the power minus 2

plus 2 to the power minus 3, how much it will be? 1 plus 0.5 plus 0.25 plus 0.125. So, it will

you know at one point that the first last digit will be 5 next 2 to 4, 9. Sorry, the next will be.

So, the next digit will be? So, last, the third digit is gone then 2 plus 7 plus 1 plus 2 3 plus 5

8.

So, that means, if all bits are 1, then you are getting a quantized voltage is 1.875 because; that

means, your analog voltage let us say is 2 volts, but you are getting a quantized voltage of

1.875 volts; that means, there is an error of 125 milli volt which is pretty large may not be

acceptable. So, you need to increase the number of bit sizes so that you can reach close to 2

volt. If we increase the resolution, then this number will further come close to 2 volt; that

means, you take 6 bits then you will get another point another bit will come.

So, like that way you will approach, but again we discussed that too many bits are may not be

acceptable, but what we understood from here that instead of writing all the time the actual

binary we can write in terms of Q format and there is a standard way as if it gives you how to

realize a binary number to a real-world voltage. So, you can say in Q 1.3 format in this case is

a real number.

For example, if you are getting a bit; that means, let us say the first bit is 1 then 0 0 1, then in

Q 1.3 what is the number? So, it will be simply 1; that means, 2 to the power 0 plus 2 to the

power minus 3. That means it is simply 1 plus 0.125. So, it is 1.125 volt; that means, this is a

realization of this Q format, ok.



(Refer Slide Time: 13:40)

So, this is the concept of the Q format. So, Q n dot 1 m; that means, n bits are integer m bits

are fractions, but it is again a notional concept just to map a real-world number, but the actual

total number of bit size is n plus m; that means, integer bit and the fraction bit. Again, this is

a notion, but whenever we say Q format generally we by default consider sign because it is

easy.

So, what will happen to the sign? Let us say we are talking about Q 2.2. So, Q 2.2 means we

are talking about a 4-bit binary. So, this gives you a 4-bit binary. Now, it can be two things

can be possible it can be straight binary or it can be a 2s complement. So, in straight binary in

all cases we will write b 3, it is in the 2 2.2 formats, right b 3. I am talking about the straight

binary, then what is that? Because we have 2 integer bits.

So, 2 integer bits mean the last bit must be 2 to the power 0. So, naturally, this will be 2 to the

power 1, then b 2 2 to the power 0 plus b 3 2 to the power minus 1 plus b sorry, this will be;

this will be b 1 and b 0 to the power minus 2, right? This is for straight binary, then what is

what happens if that means, this is called straight binary I would say the unsigned number,

but what is the signed number?

It will be minus 1 b 3 2 to the power 1 plus b 2 2 to the power 0 plus b 1 2 to the power minus

1 plus b 0 to the power minus 2. Now, we are talking about this. So, the example is that if we

take let us say 1 0 1 0. In this case, what will happen? The unsigned number will be how



much the first digit is 1. So, there will be 2, then the third digit is 1. So, it will be 2 to the

power minus 1. So, it will be 2.5, correct?

What will be the signed number because the signed bit is 1? So, it will be minus 2 plus 0.5.

So, it will be minus 1.5, ok; so, that means, minus 1.5. So, that means, what are the 2.2

formats in the sign it can take a value between minus 2 to plus 2 in the case of an unsigned

number it can take 0 to 4 close to 4. I am not talking exactly 0 to close to 2 because there will

be a quantization error. So, this is what is the Q format.

And, from now onward we are moving with 2s complements. So, we are just talking about

the second representation in this Q format.

(Refer Slide Time: 17:44)

So, anything that we talk about you know this number it starts with let us say 2 point bit. So,

this is like Q what is that? 2.3 format and by default let us assume we are talking about a

signed number. So, then n equals 2 3. So, is a signed number, then as we discussed the first

digit. So, it will be minus 75 sorry, it should be negative. No minus 1.2 minus sign is missing

minus 75 because it is leading bit is 1. So, it must be negative ok.



(Refer Slide Time: 18:20)

Then what is the largest value of N x in this case? What is the bit size? Again, it is in Q 2.3

format. So, this is the general representation of Q n dot m where n is the number of integer

bits, and m is the number of fraction bits. But, in Verilog we can write underscore, this is for

the notional concept that we are distinguishing between the decimal and integer. But, in

Verilog this underscore will be ignored, it will treat simply this 5-bit number; but we need to

use proper Q formatting to make it consistent as a fixed N number the first one is the MSB,

then it is LSB.

(Refer Slide Time: 19:07)



So, this is like you know Q dot format minimum value. So, you can represent here MSB LSB

as we have discussed it.

(Refer Slide Time: 19:15)

Now, we have discussed the Q format of a particular number, but suppose we want to add N x

plus N y, both are signed Q formats, but they have different Q formats. So, in one case let us

say this as Q 2.3, but if this has Q let us say 1.4 then how do we add it? So, we cannot add

these two numbers unless we match their size, without matching we cannot; that means, first

of all even though both are 5-bit numbers, we cannot simply add them because they are not in

the same format.

So, we have to take for addition the integer bit; that means, it is like a Q. So, here in this case

n 1 dot m 1 n 2 dot m 2. So, we have to take a max of n 1 comma n 2; n 2 for m s. So, what is

the maximum? There will be 2. So, you need to convert something like a 2 dot. Similarly, the

max of m 1 comma m 2 and the max will be 4.

Now, the question is how can we convert this to this? Because if you remember this suppose

this is my N x. So, N x will be something like how can I represent? N x will be something

like in 2 dot format, it is a significant number minus 1 b 2 2 to the power sorry, it is in the

5-bit number, sorry. So, it is a 5-bit number. So, it will be b 4 for this number.

Then 2 to the power since there are only two integer bits, it will start with this. Then b 3 2 to

the power 0; then b 2 2 to the power minus 1; then b 1 2 to the power minus 2 b 0 2 to the



power minus 3 because there are three fractions b. Now, I want to convert; that means, I want

to make N x normalization. So, this is in Q 2.3 format, I want to make it 2.4. How can you do

that?

So, we can this number will not change if we write the same thing minus we maintain this 2

to the power 1 b 3 2 to the power 0 plus b 2 2 to the power minus 1 plus b 1 to the power

minus 2 plus b 0 2 to the power minus 3 plus 0 into 2 to the power minus 4, it does not

change. That means now this normalization will look like b 4 b 3 b 2 b 1 b 0 and 0. So, we

have resized the data by padding one 0 or adding one 0; that means, we are adding a 0 in the

LSB.

So, any data bit you add in the LSB with a 0 does not change the number. So, this number

will remain the same. What will happen to this number? So, now, this format is Q 1 dot 4

formats I am just talking about N y. So, what does the N y look like? Again, there is a minus

sign it is a significant number you are talking about and this is again b 4 the first MSB

because the number is b 4 b 3 b 2 let us say b dash just to avoid any confusion, then b 0 dash

b dash.

Since there is only one integer bit it will be 2 to the power 0, then b 3 dash 2 to the power

minus 1 plus b 2 dash 2 to the power minus 2 plus b 1 sorry, b 1 dash 2 to the power minus 3

plus b 0 dash 2 to the power minus 4. Now, I want to represent this number because I want to

add this. So, this becomes a 6-digit number. Now, this is a 6-digit number where this is the

fraction bit and this is the integer bit. Here we are putting a line, this is my fraction bit integer

bit. Now, I want to represent.

So, I want to normalize y again normalize this is Q 1.4 format I want to convert it into Q 2.4,

how do you do? It is simply a sign extension; that means, again it is a significant number

minus 1. I will simply extend that bit by 2 to the power 1 and I the rest of the bit I will keep

it; that means, b 4 dash 2 to the power 0, then b 3 dash 2 to the power minus 1 plus b 2 dashes

2 to the power minus 2 plus b 1 dash 2 to the power minus 3 plus b 0 dashes to the power

minus 4.

So, by adding this 0, if you calculate mathematically you can show that this number remains

the same because you know earlier this was the leading bit, ok. So, now, what we can do? So,

here as you know; that means if you take any number; that means, this is called sign



extension; that means, a number which was earlier was b 4 b 3 b 2 b 1 b 0 is the same as

another b 4 you can consider in case of the sign.

Because of what you are doing, you are adding another bit which means with this number we

are because the second bit becomes now that bit has gone like because there now minus one

has come out right here. So, we are extending the signal bit. So, now, this will become minus

2, then plus the other bit number; that means, what was this case? In this case, it was minus 1

b 4 that bit plus the rest of the number.

In this case, it will be minus b 4 into 2 because one extra bit is coming plus b 4 plus the rest

of the number. The rest of the number means you know what is this. It will be b 3 into 2 to

the power minus 1 all this dash sorry, dot dot dot dot b 3 dashes 2 to the power minus 1 dot

dot dot dot. So, this part is common if you subtract you see this number after simplification

will again become minus b 4 dash plus this number.

So, it does not change; that means, in 2s complement, we can simply extend the sign bit. So,

we can resize this data by we can increase the MSB just simply extend the sign bit and that is

a common practice. So, this sign bit extension does not change the value. Similarly, the

extension with padding with 0 in the LSB, does not change the value.

(Refer Slide Time: 27:22)

So, that means, we can resize this data in this format. So, that means, the maximum of this we

have discussed rest of the LSB padding is 0, rest of the MSB is extended by MSB. Example



here. MSB converted into 3 dots 2. So, extend this b 2 with the sign bit, just now we

discussed another sign bit being extended. So, it remains the same because mathematically

you can show that another minus plus will get canceled. So, it will minus it remains same.

(Refer Slide Time: 27:49)

Now, if you want to multiply you can multiply with two different formulas, does not matter.

So, this will become what will be multiplication n will become n 1 plus n 2; m will become m

1 plus m 2. But, since this already has a sign bit. So, the resultant will have two sign bits; that

means, there is one extra sign bit that is redundant and I can simply discard the sign bit and I

can do a left shifting operation and pad with a 0.

That means what I am meant to say consists of 2 sign bits. So, I can eliminate one sign bit;

which means, I can do the shifting, and then for another LSB I will just pad with 0 so that this

will; means, it should be plus 1 to keep the same Q n dot m format. The data size will remain

the same the value will remain the same, but you are giving an extra headroom for the LSB

so that when you do the next operation this extra headroom can be used for final resolution.

So, it is giving 0, this is the sign bit. So, we can discuss it.



(Refer Slide Time: 29:00)

So, extra bits can be used for further processing for higher resolution. Now, we want to why

do we need all this. Suppose, we are talking about the PI controller ADC. Let us say this is

the error voltage and this is the error signal and we need to process that. So, what if I take the

first proportional control? What is my proportional control?

Suppose, I am talking about a proportional control where this is I am talking about a K p into

N x. Let us say N x has Q 1.9 in sign. What does it mean? That means, this voltage varies

between minus 1 volt and 2 plus 1 volt, and Q 1.9 means the maximum value can be plus 1

close to plus 1 minimum will be minus 1. So, it is perfect. Now, for the proportional game, I

want to vary between 0 to let us say you know 3. So, I am taking Q to be 4 points let us say 5.

4 bit means I leave one bit 0 because the proportional gain cannot be negative. So, one bit is

gone you have 3 bits. So, you can get up to 8 using 3 bit; that means, almost close to 8; that

means if you keep all bit; that means, it is a 9-bit K p. So, that means, if you realize 0 and all

one because there are total 9 bit 1 2 3 4 5 6 7 8; the first bit is 0, then all 1. So, this will give

the maximum K p. So, the K p max will be approximately equal to 8.

What is the K p mean because we are not talking about negative K p, it can be 0. All bits are

0. So, we can vary the proportional gain between 0 to 8, but at what resolution? So, this will

be defined by this type. So, the resolution will be 2 to the power minus 5; that means, 1 by 2

to the 32. So, it can vary in the scale of almost 0.3 0.03, 30 milli; that means, you can vary

between 2.03 then 2.06 like that, ok. So, in that way, you can set a proportional bit.



So, now in the PID controller, the overall output will be N proportional plus N integral. So,

the proportional part is clear; that means, we got proportional what is the format of this guy

after resizing so? That means, if we do not resize for the time being it will be Q because we

know this N 1 N 2 M 1 M 2. So, it will be Q 5.14 because 5 M 1 14. So, we got Q 5.14.

Now, we are talking about integral gain. What is integral? We know that integral has integral

previous plus there will be K i into N x instantaneous term. If we know in the actual equation

we know u i of n is equal to u I of n minus 1 plus K i into V error n. So, something similar

you are writing. But, now I want to understand what is the size of this guy.

So, that means, K i what we know N x Q format is Q 1.9 because it is defined by this ADC

then what will be the Q format of K i? First of all K, i cannot be negative. Now, in this, it is

talking about discrete time K which is typically less than 1. So, it is reasonable that we can

take 1.9 wherein in a positive sense it can be a maximum of 1 close to 1.

If all of the first bit is 0 the MSB is 0 and all are 1 it will be close to 1 because we cannot take

negative K. What can be minimized because this K I will be a fractional number. So, you

have to give sufficient resolution on the right side, but after this multiplication K i into N x.

So, we are getting the resolution of 2.18, first of all, we need to resize it because there is an

extra MSB here sign bit extra sign bit. We need to resize this there is an extra sign bit here.

So, this size is what we needed.

We cannot simply multiply this and add these two because they are in a different format and

we have discussed how to resize it first of all we need you to need to identify the Q format.

So, this will give a headroom what is the variation of integral gain that we want. So, we have

identified ok.



(Refer Slide Time: 34:23)

Next the summary; that means, the summary is that N is the control that is one, what is the

format? It has to be m proportional nominal because we need to add in a proper format N

integral nominal. What do the nominal? They have a compatible Q format otherwise you

cannot.

So, that means, we are talking about n dot m; this must be n dot m. What is n, and what is m?

That we will discuss and if we add to the number it can be the same because in the worst case

what will happen if both numbers are maximum positive there can be overflow. So, we have

to make sure because if you add two binary numbers, a 4-bit number, and a signed number, if

both are positive then there is a possibility of overflow and that will be detected because, in a

significant number, you have to be very careful about whether there can be rapping error.

If both are negative they also have to check otherwise if both have an alternative sign or they

are not maximum value, then you may not have any kind of overflow. So, typically they are

in the same number, but we need resizing of the data because we got actual proportional gain

in the format of Q if you go back to our previous 5.14 and integral in the form we got 2.18.

And, remember if you go back to this integral previous if it is Q 2.18 this will be 2.18, this

will be 2.18 in summary. Again, we are adding the two same-size data we should make sure

that this data and there is a high possibility integral that it can saturate. So, when you go to

the integral control we will take care of the saturation limit.



So, we need a resizing. Again, what will be the minimum size so the 5 has to be maintained?

We cannot discard any MSB. So, we need integral normalization you have to make it 5.18 so

that we extend with sign bit 3 extra sign bit, and similarly, for proportional control we need to

extend the Q 5.18 where the remaining 4 bits will pad with 0. So, that means the sizing that is

1. So, this is the addition of 2.

(Refer Slide Time: 37:13)

And, next, you have to resize the FPGA digital data to get the controller output should be in

the form of let us say so; that means, we got let us say what we got 5.18.

(Refer Slide Time: 37:36)



So, we need to get 5.18 in this format; that means, we got 5.18 as the controller nominal. But,

this may be too large because what will do with this control output? So, this control output

has to be compared with a short waveform, but we have to check what is the resolution of

how we will go to that point; that means, we need also further resizing.

So, first of all, we need resizing of the integral term, and proportional term to add them, and

then we need resizing of the Q to fit because you have to compare with another signal that is

one and. Secondly, we also need a saturation block because there is a high possibility that the

integral will saturate and there is a sign so, there can be a wrapping error. That means if you

take a counter let us say you are taking a 3-bit signed counter, what will happen?

So, if 0 wall one reaches the next you hit it will be 1 or 0. So, this will be a rapping error and

that can cause a huge problem in your controller. So, you have to be very careful we can put a

limit here so that it should not exceed. So, similarly for the controller so, we need to put a

limit.

(Refer Slide Time: 38:55)

So, in summary, we have discussed binary numbers with actual voltage, discussed the Q

format, we discussed how to resize the Q format for addition, subtraction, and multiplication,

what is the law, and then how to do the arithmetic operation in Q format some basic idea we

have discussed; that means, processing of the resizing.

That is it for today. Thank you very much.




