
Digital Control in Switched Mode Power Converters and FPGA - based Prototyping
Prof. Santanu Kapat

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Module - 07
Introduction to Verilog and Simulation Using Xilinx Webpack

Lecture - 65
Simulation of Verilog-HDL-based Design using Xilinx Webpack - I

Welcome. So, in this lecture we are going to simulate, we are going to first discuss because,

how to simulate you know your Verilog code using the Xilinx ISE simulator. Again, I am

saying this is not part of the exam as well as the assignment, even if you do not need to install

the software. But, it is just for the interested participant who can simulate.

So, this lecture is divided into two parts; in part I, I will be showing some screenshots of how

to do that and in part II will be actually going to Verilog Xilinx ISE software and we will

write some code there.

(Refer Slide Time: 00:58)

So, here we will first show the step for simulating using the Xilinx ISE simulator and some

example case studies using Xilinx webpack wave pack.



(Refer Slide Time: 01:07)

So, here once you want to simulate in Xilinx ISE. First of all, I am assuming that you know

those who are interested you know this for optional Xilinx, you can implement can install it

on your computer. And, you know you can check on the web how to install Xilinx ISE. So,

we are assuming that you have already installed it.

Now, you can create a project. The first steps are this, you need to create a project then you

need to select a device. And, we will be showing what device you are going to use for this

hardware demonstration the Xilinx device for this course. Then, we will create some modules

and write some Verilog code. Then, check the syntax and run the code and create a test bench

for a specific Verilog module. And, we need to check the syntax and simulate the test bench.

And, we need to check how to see the waveform using ISim.



(Refer Slide Time: 02:01)

So, this is the first when you install the software. You can see if you go to that, if you click, if

you open the software under the file you will create a New Project ok.

(Refer Slide Time: 02:16)

So, in the New Project, if you go this is a screenshot. Then, it will ask you know you have to

write something; that means, you can you have to select a folder where you want to keep this

project. So, you can create your folder. Then, you have to name you to have to keep the name

of this project. So, here the project name is Full Adder ok. Then, you go to the next and do

not change anything, this HDL top level should be there.



(Refer Slide Time: 02:41)

Then, the next stage will go for this stage where it will ask for the device. So, this thing you

do not have to bother with, but here in our course we will be using Spartan6 and the

particular device ID is this; that means, XC6SLX9 and the package is TQG1 double 1 double

4. And, then we have to specify the preferred language as the Verilog and the simulator ISim

ok.

There can be model sim, the third-party software, but we are preferring that whatever Xilinx

software is there ISim, that will be used. Then, everything else you keep as it is by default,

only you have to specify the Verilog and the ISim and this particular device detail.



(Refer Slide Time: 03:28)

Next, if you go next, it will show the project summary, and then if you finish, if you click this

Finish.

(Refer Slide Time: 03:37)

It will create this project. So that means, your new project is created and the new project will

come like a device, this ISE ok. And, this device you know I will go in the next you know

next part II to show actually in the Xilinx platform.



So, then it will ask for a new source; that means, it will create an ISE-type structure, here

with a project name. Then, in this ISE what do you want to implement? Because, as if you are

making an ISE, a virtual ISE will have several pins depending upon what exactly you want to

implement and how many IO ports are there.

(Refer Slide Time: 04:22)

Then, you have to first add a New Source; that means, we want to write a Verilog code, New

Source. Under this source, there are many options; Schematic, then we have to add the

Verilog Module that is it. And, if you want to test, there is a test module also there, which will

come next. So, under the Verilog module, this module will ask for the Verilog File name.

So, again you are making a Full Adder as the File name and it is also under the Location of

Full Adder which is a project name. So, next remember the File name can be different. I

mean it need not be the same as your project name. But, whatever File name will make, the

Verilog dot v file will be created by that name. So, you should not change; that means,

whatever you are doing should be consistent.



(Refer Slide Time: 05:06)

Then, if you go Next, it will ask how many input-output ports you want. But, I think you do

not need to do anything, because you will be declaring the port inside the Verilog code. So,

you do not leave it is and then go Next.

(Refer Slide Time: 05:21)

If you go Next, then it will ask if can you will see that your file name is Full underscore

Adder dot v. So, it is a dot v file, dot v which is a Verilog file, Verilog extension is dot v HDL

ok. And, the module name is Full Adder ok and you are also keeping the directory which is D

drive in Full Adder in this case.



(Refer Slide Time: 05:48)

Now, once you it will show. So, this is your project, it will look like an ISE here. You can see

under this project you are plugging in one Verilog file which you want to implement like a

Full Adder, you want to implement a Full Adder. Once you write by default it will come Full

Adder and this block you have to specify; that means, it is like that module, then it will come

like a Full underscore Adder.

This is the name of the module. Then, we need to have brackets where in the Full Adder you

know you can specify a sum, carry out whatever you want to write A, B then, you can say

carry in. So, it is up to you, whatever you want to keep, but by default, since you have not

specified in the input-output, it will be left vacant; that means, there is nothing here, you need

to fill the gap. Nothing there so, it is vacant. So, you have to fill this gap ok.

So, you can take this here to like this, then end the module. Now, here you will see the time

scale 1 nanosecond, that is if you provide any time unit; 10 units, 20 units, it will be in terms

of multiplied by 1 nanosecond; that means 20 units corresponds to 20 nanoseconds. And, this

1 picosecond slash suppose it you simulate more precisely decimal, it can go up to 1

picosecond. So, it is more important this value ok.



(Refer Slide Time: 07:24)

Next, now you fill up your Verilog code; that means, if you want to write a Full Adder, first

you can see the summer, sum block. You know if it is not visible, I am writing here module,

then it is the name as the Full Adder. So, here the module name is again different because we

have a Full Adder dot v file. But, it is better to maintain the same name rather than name

another name. So, we can use the Full Adder here, then S, C, a, b, c in.

Then, we have to define input as a b c in, the output as S and C. Then, we know there are

errors there are wire connections between the S bar C bar, c 2, and then Half Adder, we need

to take call 2, instantaneous 2 Half Adder and we have to connect accordingly. And, then it

will go to or gate to generate the carryout. And, then that is the end of the module.



(Refer Slide Time: 08:40)

Once, you write this code because we have discussed about this Verilog code; then you have

to create a New Source under this Full Adder.

(Refer Slide Time: 08:46)

There you can have a Half Adder module because we have called Half Adder, but not you

have not yet designed it. So, under this Half Adder, you have to create a Half Adder module

name. Again, Verilog Module, the name is Half Adder. It must be the same as the module that

we have instantiated here.



(Refer Slide Time: 09:04)

(Refer Slide Time: 09:05)

Then, again we have to create a Half Adder dot v file.



(Refer Slide Time: 09:09)

And, it will generate this Half Adder another module.

(Refer Slide Time: 09:13)

This Sub Module comes under this Sub Module and they are calling. So, Half Adder module

you have a sum out, carry out, a, and b. So, you can write in terms of xor gate and that we

have discussed earlier. So that means, two Half Adder now are called instantiate which is

why they are coming under one Full Adder.



(Refer Slide Time: 09:33)

Once, you are done, then you go to implement the top module. You do not need to implement

it because you are not using Verilog FPGA implementation right now. You can end up with

synthesis because synthesis will have an RTL block and beyond the RTL block it will go for

implementation, where it will generate you know, it will map into the target FPGA device.

And, final it will generate the bit file which I will be showing when we go to the hardware

demonstration. But, here you need to know the RTL logic.

(Refer Slide Time: 10:10)



So that means, then you can see; that means if you implement it will show synthesis is done

correctly, then translate. Then, you can see the schematic, there is a tool Schematic Viewer

RTL.

(Refer Slide Time: 10:24)

(Refer Slide Time: 10:25)

It will show that it is the Full Adder circuit which consists of 1 Half Adder here like. So, this

is I think the Full Adder and Full Adder also have an external gate right? This is Half Adder

1, this is Half Adder 2. So, the first Half Adder will take the two inputs and the second Half

Adder take the output of the first Half Adder and the carry-in.



(Refer Slide Time: 10:54)

Then, you can add a New Source, if you want to test it.

(Refer Slide Time: 10:58)

Go to the Verilog Test Fixture; that means, if you right-click here, New Source Test Fixture.

Now what; that means, test bench for Full Adder? So, you need to make sure that you are

testing the Full Adder, because of the Full Adder circuit you want to test. You can also

selectively test the Half Adder circuit, customizable, no problem. So, you have to select

which block you have to test. Then, go you have to create a test plan.



(Refer Slide Time: 11:25)

Then, it will associate with Half Adder or Full Adder.

(Refer Slide Time: 11:30)

So, if you make it Full Adder, then it will create a Test Bench circuit.



(Refer Slide Time: 11:31)

And, it will link. Now, in this Test Bench circuit, you can make whatever you want ok. And

so that means, that is it for the description of how this flow of Verilog. In the next lecture, I

will be showing the actual Verilog implementation.

(Refer Slide Time: 11:50)

So, in summary, we have discussed the step for simulation using Xilinx ISE. And, we have

also considered an example of a Full Adder circuit and we will be showing the actual Verilog

demonstration in the next lecture that is it for today.



Thank you very much.


