
Digital Control in Switched Mode Power Converters and FPGA-based Prototyping
Prof. Santanu Kapat

Department of Electrical Engineering
Indian Institute of Technology, Kharagpur

Module - 03
MATLAB Custom Model Development under Digital Control

Lecture - 23
MATLAB Model Development for Fixed Frequency Digital Control

Welcome back. In this lecture, we are going to talk about MATLAB Model Development for

Fixed Frequency Digital Control. This lecture is the continuation of the previous lecture.

Here we will extend whatever we learned about the step-by-step MATLAB model

development for digital voltage mode control, but at a very basic level.

(Refer Slide Time: 00:31)

Then, we have shown a buck converter example with simulation. We will just show up once

again. And, then we will show here the MATLAB model for digital current mode control.



(Refer Slide Time: 00:52)

So, here in digital voltage mode control in the previous lecture, we talked, that we talked

about A to D converter. And, we have already discussed how to implement this sampling

block using enable and disable blocks, where we can customize the sampling point as well as

the sampling rate. We have also discussed how to introduce a delay in that signal, basically at

what point should we sample ok.

(Refer Slide Time: 01:20)

Next, we will talk about mixed signal current mode control because we have discussed in

mixed signal current mode control your current loop is analog and the voltage loop is digital.



So, we need to implement digital. So, we need A to D converter and since we are not using a

digital platform number; so, it is a MATLAB version which is why we do not need a separate

D-to-A converter in the MATLAB simulation.

But, you know one can try out the model of a D to-A converter because D to A converter

model is like a zero-order hold effect and that is already incorporated.

(Refer Slide Time: 01:53)

So, let us go to the MATLAB model of the digital current mode control.

(Refer Slide Time: 01:58)



(Refer Slide Time: 02:02)

So, here you know we have already discussed digital voltage mode control in the previous

lecture. So, I am not going inside this block, but here we are talking about digital current

mode control. So, everything else is the same, only this controller block is different. If you go

inside again there is a controller. I have used the same controller, but I will not use derivative

action.

(Refer Slide Time: 02:27)

So, I will put derivative action to be 0 and you see you know z is equal to 1, because if only

PI controller we will see. So, it is only; so, pd sorry it is not derivative, it is a p and I because



I am talking PD means discrete time proportional gain and K id means discrete-time integral

gain. So, this is the representation of a discrete-time PI controller ok. And, then you know

this is the reference voltage and this is the A to D converter that we have discussed.

(Refer Slide Time: 02:56)

And, we can customize the sampling point here. So, this is a sampling delay inserted, this is

an inductor current. So, this block is common. This whole block, this block is common, all

these blocks are common analog domain; analog current mode control, only this block is

different here right? So, this discrete-time transfer function and this block. So, that means this

is a basic diagram where we are just inserting the digital block ok.



(Refer Slide Time: 03:23)

Now, let us go and run the simulation. So, here we are talking about the mixed signal peak

current mode control.

(Refer Slide Time: 03:33)

And, if we want to increase the gain, let us say we are using a little bit higher gain.



(Refer Slide Time: 03:39)

And, we will see what the response looks like. So, this is a mixed signal current mode

control.

(Refer Slide Time: 03:46)



(Refer Slide Time: 03:48)

(Refer Slide Time: 03:50)

Where we are using, this is we are sampling once per cycle.



(Refer Slide Time: 03:55)

And, there is no delay here. You see there is sampling exactly at the point of switching ok.

But, now we want to sample a little bit earlier. So, how to incorporate it? So, let us go back

and hear it we have t s.

(Refer Slide Time: 04:15)

So, in our code let us go back. So, we will hold the previous result and put t s equal to 0

points, let us say 8 times T.



(Refer Slide Time: 04:26)

And, in the plot command, we want to change the color. So, we will use green color and red

one and let us run. So, this is with the delayed version ok.

(Refer Slide Time: 04:41)

So, we will see the response is not fundamentally different.



(Refer Slide Time: 04:46)

Because it is already kind of a sluggish response.

(Refer Slide Time: 04:48)

But, the sampling point got is different.



(Refer Slide Time: 04:52)

.

(Refer Slide Time: 04:59)



(Refer Slide Time: 05:01)

So, if you see the green waveform and, if you take these two particular update mechanisms

you see the magenta one which we have drawn earlier; that means if we take only a few

cycles.

(Refer Slide Time: 05:09)

You see the magenta one was getting upgraded at the switching point which was the earlier

case. But, now the red one where we have introduced a sampling delay, and that got changed.

So, we are getting we are sampling before the switch turns on. So, we have some around 0.1 t



time and that can be considered for ADC conversion time and computational time. So, you

can keep on changing.

(Refer Slide Time: 05:39)

So, the bottom line is this. By this block, we can actually; that means, by using this block we

can customize a sampling point. And, this will also enable you to go to for constant on-time

control or constant off-time control. The event-based sampling, the event can be created by

this clock and that will sample the output voltage.

So, in summary in current mode control; means, we are talking about the analog current loop,

but right now we are using this compensator as a transfer function right. But, imagine what

will happen if your; suppose you take a PI controller; what does it look like? So, the PI

controller you know is generally written like this, the output of the controller n is k p into V

error voltage plus u I n.

And what is u I n? It is nothing but u I n minus 1 plus integral gain into error n. So, this can

be simple if you take the transfer function here, you can get this. How to get this? You will

get k p plus k i 1 minus z inverse ok and this block you will get. But, right now we are simply

plugging this transfer function. But, what will happen if the z inverse; what is z inverse? z

inverse is a unit delay, right?

So, what is the unit delay? That means it is defined with respect to some sampling clock.

Now, if the sampling itself, if you want to customize the sampling edge; that means, you



know we talked about we want to change the sampling point. Suppose, this is my sampling

point, I want to shift to it here; I want to shift it here which is one possibility. Then, simply

plug in this may not work, because if you go inside, if you go inside this block; it will ask for

sampling time as if the whole computation happens at that edge.

But, we do not want, we want the computation to happen once the data of the ADC is ready.

Since the ADC clock is shifted; so, naturally the conversion time will be there and your data

will be ready after some time. So, you need to start computing after that. So, this transfer

function will not allow customizing the point of computation or the point where two

computations start. So, this cannot be done using just plug in this transfer function.

So, in summary, if you want to customize that I want to start computing once this sampling

clock is the same as the ADC and the data is ready, then I will start computing. So, then you

have to realize this. So, this u I n will be a register; that means you will have this kind of a

register.

There will be a clock and the register will store and pass data. And, this register will behave

like a z inverse block. But, whether this clock; means, we want to shift this register based on

the edge of the clock, not by this transfer function. Another point we want to even change is

the sampling rate, because if you go for event base sampling, the sampling clock the edge

will differ; may be transient their edge-to-edge will be different.

Then, under a steady state, if there is any small perturbation, there will be a difference in the

event base. So, for such cases the z inverse is not very straightforward, it cannot be

implemented like this. So, there is no fixed sampling rate. So, we need to go for something

called difference equation-based implementation; that means we need to go for difference

equation.

That means, we need to implement; means, finally, the thing we need to implement this

transfer function using a difference equation. How it is done? So, one of the examples I have

shown here ok. So, if you use this differential equation and then this will be a delayed version

of this; which means these two can be if this is your u n and u n minus 1; this register can be

used to delay this block. And, at what point will delay with respect to which clock can be

synced with this sampling clock here?



So, ultimately whatever we are implementing to digital control straight away using this block

is not a good idea. So, in the next lecture we will implement, we will go further down and

implement this controller using a difference equation.

(Refer Slide Time: 11:04)

So, in summary, we have discussed some aspects of the digital voltage mode control

MATLAB model that was also described in the previous lecture. We have shown a buck

converter example and in this lecture, we also talked about digital current mode control

implementation.

And, we have realized that the direct transfer function, importing the direct transfer function

is not a viable solution, particularly when we are considering the customized sampling edge

as well as the varying sampling plot. So, we need to go for a different equation-based

controller implementation. So, in the next lecture, we will talk about that aspect. So, for today

that is it for today.

Thank you very much.


