Digital Control in Switched Mode Power Converters and FPGA-based Prototyping Prof. Santanu Kapat Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Module - 03 MATLAB Custom Model Development under Digital Control Lecture - 21 Recap of Voltage and Current Mode Control Implementation using MATLAB

Welcome back. So, in this lecture we want to recapitulate our, you know Voltage and Current Mode Control Implementation using MATLAB.

(Refer Slide Time: 00:33)

So, here I want to recapitulate our customized model development and I will be referring frequently to our previous NPTEL course, where you can get the detailed material. Then we will recapitulate fixed frequency analog voltage mode control as well and also current mode control implementation and then we recap we will recap the constant off-time analog current mode control and constant on-time analog current mode control.

(Refer Slide Time: 01:00)

So, first, we will take the buck converter voltage mode control. So, here this is a conventional buck converter. It can be a synchronous buck converter also and we are talking about a voltage mode controller we know about the sawtooth waveform and the control voltage is compared to the sawtooth waveform to generate the acceleration.

(Refer Slide Time: 01:19)

What does the MATLAB file look like? So, this is the overall structure of the system, and if I go to MATLAB.

(Refer Slide Time: 01:28)

So, let me go to MATLAB. Now, this is the MATLAB block diagram of this voltage mode feedback control of a buck converter. Here this is the power stage; which means, the power converter.

(Refer Slide Time: 01:42)

And you know if you go inside, then the switch mode voltage inductor current dynamics the DCM enables logic then the capacitor dynamics. And this accepts the input voltage where we can also apply a step input voltage here is the DCM enable logic if it is set to 1 it will become a conventional buck converter. If it is 0, it will become a synchronous buck converter. Then

there is the load current. So, here we are talking about two types of load. One is the resistive load which is why it is 1 by R, which is connected to the output voltage of this load.

Another is the step current load. So, we can create a customized load profile. So, we can get a low transient response and this is a reference voltage then you can reference voltage and nominal reference voltage then we can apply reference step transient here we are logging all the data into the workspace we are saving, and then this is a feedback controller. So, let us go to our presentation. So, this is the overall diagram that is showing.

(Refer Slide Time: 02:47)

Next, if you go inside this converter. In the power stage, I have shown you the switch node configuration then inductor dynamics DCM logic, and capacitor dynamics.

(Refer Slide Time: 02:58)

How does it realize? That means, if you take the switch mode voltage it is q v in minus I L r 1 r 1 is this one, then 1 minus q minus v d I L r d. So, v d is the direct voltage drop r d is the direct resistance drop. And this can be implemented using this logic and we can create a DCM that enables logic like this.

(Refer Slide Time: 03:24)

Similarly, if you go to inductor current dynamics, we can write di L at 1 by L, and this particular term is incorporated to enable the DCM operation it can be realized by this and you can get the complete block diagram using this architecture.

(Refer Slide Time: 03:45)

So, this DCM enables block; which means, we have a DCM enable if we set it to 1, then it will enable this DCM block depending upon whether the inductor current is touching 0 or not. But, if you set it to 0, then it will not the inductor current can go to in the negative direction. Because this always will be 0; that means, the DCM enable logic is a DCM enable logic is disabled and this is the overall block diagram for the DCM enable logic.

(Refer Slide Time: 04:15)

And the conventional buck converter. If you take the capacitor dynamics then the capacitor voltage capacitor dynamic output capacitor dynamics d v c it can be written like this and this

is the output voltage in terms of capacitor current and the capacitor voltage and you can get a complete realization.

(Refer Slide Time: 04:35)

So, the complete conventional buck converter, you can get this detail in this NPTEL online from our previous lecture in lecture number 4. So, here we are not again wasting time to again you know explain the all details of the power stage architecture, but this represents the complete block diagram of this converter.

Here are the inductor dynamics and that includes the DCM. This is a DCM enable logic, this is the capacitor and the output voltage dynamics and this is the switch node voltage. So, this corresponds to this block, then this corresponds to this block. Then this DCM enables corresponds to this block and this corresponds to this block. So, all detail can be obtained in this lecture number 4 of this NPTEL course.

(Refer Slide Time: 05:27)

Now, if we talk about the voltage mode control Simulink diagram. So, this is what we are going to consider.

(Refer Slide Time: 05:35)

In this diagram what is inside? Inside this controller; that means, you are taking the reference voltage and the output voltage and this is the error voltage this is the controller which is GC and we will program this GC from outside; that means, the transfer function will be the poles and zero that will program from the outside right or you can realize inside also there is no

problem. Then here it is a ramp voltage and along with the ramp we are considering input voltage feed-forward.

So, if you remove the input voltage feed-forward, then this terminal can be simply connected with this RAM. If you bypass the input voltage feed-forward. And why it is used? As we have discussed in our earlier course that input voltage feedforward will help to overcome the supply you know the audio susceptibility problem or the line regulation problem in voltage mode control.

Because that is one of the problems, because we know in voltage mode control the loop gain is input voltage dependent and that is why it will suffer from poor line regulation that can be overcome by input voltage feedforward and you can make the loop gain independent of input voltage by this arrangement.

(Refer Slide Time: 06:51)

Then in this course in this class, I will also show the MATLAB simulation of peak current mode control. What does it look like? So, peak current mode control means your reference current inductor current is compared with the reference current. This is a complete block diagram you see this block remains the same. So, overall this block remains the same we are not touching this block, but only this is going to change ok.

(Refer Slide Time: 07:17)

What does it look like? Here again, this error voltage is the same compensate structure is the same, but we may consider a pi controller. Earlier we may consider typing 3 or PID here you can use type 2 or pi, then this is the inductor current and we can add an external ramp compensating ramp. So, this is our compensating ramp, but this is optional. We may or may not use it. The compensating ramp then the overall block is compared with the output of the controller. So, this is a v con and then it goes to the latch circuit ok.

(Refer Slide Time: 08:01)

lien Nen Open Compare Inport Save	Adda Sta Stream & Anna Can Stream & Anna Can Stream & Concerner & Stream Anna Anna Stream	A H C C C C C Sech Decorection P
FLE VARIABLE	CCCE SINU.NK DW/ROMENT RESOURCES	and the second
	1 April 2 Filter 1	x Command Window New to MAILAB' Seresources for Cetting Stated.
Section and Control Section and Control	1 - close all; clear; clc; 2 - 3 %% Define parameters 4 buck_parameter; 5 f_sw=1/T; 1 - 6 Vin=12; Vref=1; R=1; 7 - 8 %% Modulator gain 9 - V_m=10; Fm=1/V_m; 10 7 8 %% PID Controller Design 12 - 8 - 9 - 9 - 9 - 11 %% PID Controller Design 12 - 13 num_con=[K_d+(K_p*t_d) K_p+(K_i*t_d) K_i]; 14 - 9 - 15 - 15 - 16 - 17 - 18 - 19 - 10 - 11 - 12 - 13 - 14 -	• f x >> magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent magent m
teck_conv_Peak_CMC.als (Smulth Hote)	v16	Fin 0.1000 14) Gc 1-114 13486-7
Madel version: Proview 1184 2015 Sociel Standark version: 2015 Automotified by User (na description available)	17 %% Control method - option 18 - op1='buck_converter_VMC.slx'; 19 20 - 20 - op2='buck_conv_Peak_CMC.slx';	1 (1, m) 1 1 (2, m) 1
	0.1	script Le 9 Col 24

So, let us go to the MATLAB block for this current mode. So, I will show you this is the peak current mode control that I was showing. So, this block we are going to consider this.

(Refer Slide Time: 08:12)

This is the peak current mode control block, I was showing.

(Refer Slide Time: 08:19)

And if you go inside you know this is exactly the block I was demonstrating. So, you can get all this architecture.

(Refer Slide Time: 08:27)

Next in this lecture, I will also show MATLAB simulation of constant off-time peak current mode control. Again this block only is the difference ok everything else is the same.

(Refer Slide Time: 08:39)

How does it operate? Here again, it is the error voltage, it is the compressor. So, this part is common, and here is the inductor current. But, after this comparator this whole logic is different. In fixed frequency, we had a latch circuit, but now instead of a latch we have a mono short timer and this is loaded with the constant of time ok.

Because this is an inverted logic and then it needs to we need to consider minimum on time because in all commercial products constant off-time control products you need to consider minimum on the type and then you can realize the whole block ok. So, by this, we can realize the constant of time which is analogous to peak current mode control.

(Refer Slide Time: 09:24)

Let us say the constant off-time peak current mode control. The constant on-time valley current mode control, again only this block is different everything else remains the same.

(Refer Slide Time: 09:32)

How is it realized? Again this error voltage part is commonly compensated is common and this is compared. So, this is different. Here again, we are considering a monostable timer that will be loaded with constant on-time ok. And all these are discussed in lecture number 23 of our earlier course; that means, in our NPTEL course on control and tuning methods.

So, in this course, you will get details of this implementation. So, you can just search here. So, in lecture number 23 you will get the detailed implementation of this. Let us go to MATLAB. So, in MATLAB again this is what we have discussed earlier in our earlier course.

(Refer Slide Time: 10:38)

So, I am just summarizing that here we are considering a buck parameter stage. So, these are the parameter values. Then we have a buck converter control block; that means, where it will call the parameter file, it will load the parameter file. You can customize the input voltage that you want.

You can customize what is my initial load resistance value, and refine the voltage. Modulator gain; that means if you want to set the ram the maximum voltage is 10 volts. If it is Fm 1 by modulator gain, then PID controller in this particular class I am not going to design controller.

I am just taking some arbitrary value of PID and we know that PID controller practical PID controller has a time that tau d ok and that we discussed in our earlier lecture. So, I have just taken some values and then you can compute the numerator and the denominator as well as the controller transfer function, then there are many options the same controller can be used for many options.

One I can simply use a voltage mode control. The one I can use is peak current mode control. I can use peak current mode control on time control. I can use valley current mode constant on-time valley current mode control. So, all these possibilities are there. Only for constant off-time control do you need to specify what is my nominal off time and I have set it as 1 minus d into T. Then what is my minimum one time? For constant on time what is my nominal on time?

Then what is off time minimum off time? Then you can accordingly select. Here we are going to simulate for a total of 5 milliseconds and I am applying a step after 2 milliseconds then I am taking a load transient of 20 ampere. You can also consider the input voltage

transient or the reference voltage transient, then I am calling this a bulk converter simulation file.

(Refer Slide Time: 12:38)

What is the bulk converter simulation file? If you open this file you will find I have said this same enable to 0; that means, it will operate in a synchronous mode. I have considered the initial currents of the inductor value inductor current and initial capacitor voltage, then it will ask for the file name I will simulate the Simulink file from the MATLAB dot m file, but the name of this Simulink file depends on what preference you are giving at the outside; that means if you say the simulation enter file name is here.

Which option are you selecting? Are you talking about voltage mode? Are you taking the current mode? Are you taking or talking about constant off time or on time? So, you can simply configure and this will come here. Then after the simulation is over all the data's are stored in the workspace and we are calling back all this data inductor, current ramp voltage, output voltage, and control voltage and we can plot it according to our requirements.

(Refer Slide Time: 13:40)

Now, you will find here also there is only a plot buck. So, if you go to the plot comment we are using subplot 2 plot 1, and plot 2, 2 subplots under one figure and we are plotting inductor current and these are the setting. So, you know we will provide this you know maybe in another presentation a tutorial presentation.

How do plot all the step-by-step guidelines that will be given? But in the current lecture, I want to make sure that you know this thing whatever I am showing if you want you can plot it or you can plot it separately. It is just the plotting of the inductor current data. So, one subplot will be inductor current, the other subplot will be output voltage ok and then I am linking in the link axes.

So, that the two subplots can be linked and so that if you zoom both of them can be equally zoomed ok. So, let us run the first option which is a voltage mode control. So, if we run this voltage mode control. So, let us see we are trying to see that load transient performance using voltage mode control in a synchronous buck converter.

(Refer Slide Time: 14:51)

w Open Save Compare * Gillion Comme * Pitel * Gillion Fod * Inde		and the second se
Tot New Settemport	EDF BREWERNES BUN E 50	
rent Folder	Z Editor - El S. Kapat July 2022. To be recorded S	Command Window
Name -	Buck_Converter_Control.m X Plut_bi	New to MATLAB1 See resour
ilog buck_conv_COT_XMC.sk	(1) This file can be published to a formatted de	× for Setting Stated.
back_conv_Peak_CMC.sb back_conv_peak_COT_CMC.sb	4 – buck_par 🔂 0 2 4 6	⊤ ª f x;>>
buck_conv_valley_COT_CMC ale	5 - f sw = 1/1 3	
) Buck_Converter_Control.m) buck_converter_simulation.m		
buck_converter_VMC.sk buck_converter_VMC.sk.autosave		
buck parameter m		
var, frq, mix, sig, cont, on, 2015.slx	8 %% Modu	
	$y_{-} = V_{-}m=10$	
	$\frac{9}{10}$ $\sqrt{m=10}$ 5 0 2 4 6	
	11 %% PID Concroner Design	·
	12 - K_p=30; K_i=50000; K_d=0.5*C; t_d=T/5;	
	13 - num_con= $[K_d+(K_p*t_d) K_p+(K_i*t_d)]$	K i]; Workpace
	14 - den con=[t d 1 0];	Name - Val
		C Buck,realt 5/7
	15 - Gc=tf(num_con,den_con);	DCM,6n 0
	16	detta_lo 20
	17 %% Control method - option	ddta_Tind 0 den_con (43
	18 - op1='buck converter VMC.slx';	entor file, name bu
		- Fm 0.11
uck.m (Solpt)	v 19	B (4 10
t_s+t_step/*feit_Vief++c_ac_V/Linewidth; 2);	20 - op2='buck_conv_Peak_CMC.slx';	10 Ka 10
	21	н К) 90 Кр 30
	22 - op3='buck conv peak COT CMC.slx';	L SO Aver, con [1.]
		en den den den den den den den den den d
	23 - T_off=((Vin-Vref)/Vin)*T;	and Sector

(Refer Slide Time: 14:52)

And this is the load transient performance. You can see this is the inductor current and this one is the output voltage.

(Refer Slide Time: 15:02)

(Refer Slide Time: 15:04)

And here I am showing it is using a PID controller and this is a transient performance. So, how I am designing? I have here I have taken some adult value, but as we move forward when you go to week 5 we will talk about the design methodology. How to design voltage mode control? For analog voltage mode control design, we have already discussed you know it is already taught in our previous course. But, we will summarize, but how to design digital control that we will discuss.

(Refer Slide Time: 15:33)

But here for a given parameter value, this is the load transient performance.

(Refer Slide Time: 15:37)

So, you can see if you zoom here, then it will also be equally zoomed here ok. The next part is that now we want to compare this with the current mode controller so; that means, we will hold this we will hold this.

(Refer Slide Time: 15:50)

The next part since it is a current mode control does not require any derivative.

(Refer Slide Time: 15:55)

ACAC PLOTS APPS CON Control Control	ent 🗟 🏨 🔟 🔹 🔛 😥 Palantatan 🕜	δ 🖬 🔬 🖄 🗐 🥥 🕜 Ο Ο Search Socurrentation — β
Fill Next Staget July 2022 + To be record	EDF BROWDONTS RUN der & And Mit Allebrary 21 b	•
Current Folder	🛞 📝 Editor - EVS Kapat July 2022 To be recorded April 24-Lecture - 27 Buck, Converter, Control in	x Command Window
Name = N	Buck Converter Control in X Richardson X +	New to MATLABT See resources for Setting Stated.
buck_conv_COT_XMC.sk buck_conv_Peak_CMC.sk	(1) This life can be published to a formatted document. For more information, see the publishing <u>using or bolip</u> 10	fx >>
buck, conv. peak, COT, CMC.ah buck, conv. yalley, COT, CMC.ah		, y
Buck, Converter, Control.m"	11 %% PID Controller Design	
buck_converter_VMC.sk	12 - K_p=30; K_i=50000; K_d=0*0.5*C; t_d=T/5;	
buck_converter_VMC.sk.autosave buck_parameter.m * Piot buckm	$13 - num_con = [K_d + (K_p^{*t}_d) K_p + (K_i^{*t}_d) K_i];$	
a ver, frag, min, sig, cont, on, 2015 als	14 - den con = [t d 1 0];	
	15 - Gc=tf(num con,den con);	
	16	
	17 %% Control method - option	
	18 - op1='buck_converter_VMC.slx';	
	19	Workspace Name + Value
	20 - op2='buck_conv_Peak_CMC.slx';	23 back, result 2x1 day
	21	C 2000e
	22 - op3='buck conv peak COT CMC.slx';	delta_lo 20
	$23 - T \text{ off} = ((Vin-Vref)/Vin)^*T;$	ddta_Vind 0
	24 - T on min=T/50;	enterfilejname buckjo Hj.rw S0000
Piet. Inck.m (Script)	25	E Gc 5/100
plot(d), s=t_step)?fell, Vief=v_ac, V, Linewidth', Zj;	26 - op4='buck conv valley COT CMC.slx';	13 (J. 13948) 11 (J. et 1
been the second s		
		10 K.p. 30 10 L 5.0000€
	28 - T_off_min=T/50;	num,con (1.1200e ep1 buck,co
	29	ep2 Buck_n
m.	ho (C) 1	soipt Le 12 Cel 2
E P Type here to search	o == == 🔃 🧿 🌢 🔎 😰 🖾 🔛 🖉 🚺	G ● 381C Survey ∧ B ● 127 0+ 18 1213 10 1

So, we can simply replace and now we will select option 2.

(Refer Slide Time: 16:02)

🖨 MARLAB R2015a		- 0 ×
HOME PLOTS APPS EDITO	R ROLCH VEW	A A L D C So C D Search Documentation P
New Open Save Compare * Gi Co To * Comme		
🌳 🕸 🔀 📒 + E. + S.Kapat July 2022. + To be record		- 4
Current Folder	Zehter - Els Kapat July 2020/to be recorded April 244 entrare-278 Buck, Converter, Control in Buck Converter: Control in: X: Bite buck in: X: 4	x Command Window
B dei	This file can be published to a formatted document. For more information, see the publishing <u>inter</u> or <u>help</u> .	New to MATUABI See resources 3 x for <u>Setting Stated</u> .
buck, conv., COT, UMC.ok buck, conv. Peak, CMC.ok buck, conv. peak, COT, CMC.ok	19	> In buck
back, convigent, COT, CMC and back, convigent, COT, CMC and Back, Convieter, Control in	20 - op2='buck_conv_Peak_CMC.slx';	In Buck
buck, converter, simulation.m buck, converter, VMC.sk	21	Found alg
buck_converter_VMC.sk.autosave buck_parameter.m Plat buck.m	22 - op3='buck_conv_peak_COT_CMC.slx';	'buck_c
🚡 var, frq, mix, sig, cant, an, 2015 als	$23 - T_off = ((Vin-Vref)/Vin)*T;$	'buck_co
	$24 - T_{on_{min}=T/50};$	"buck_c
	25	'buck_co
	26 - op4='buck_conv_valley_COT_CMC.slx';	buck_c
	$27 - T \text{ on} = (Vref/Vin)^*T;$	fx,
	$28 - T_{off}_{min} = T/50;$	- Workspace @
	29	Name - Value Those weat to food a
	30 - enter_file_name=op2;	C 2000e-C
	31	deta_lo 20 deta_Vin 0 deta_Vind 0
	32 %% Transient parameters and plots	den.con (4.000e- enter.file.name buck.co
	33	- = + (,sw \$0000
Plot, back.m (Script)	→ 34 - t_sim=5e-3; t_step=2e-3;	6 Gc 15/14/ 13 136486/7 13, 136486/7
plot()),s+1,step)/Te3, Vief+x,ac, V, Linewidth(, 2);	35 – delta_Io=20; delta_Vin=0; delta_Vref=0;	K_d 1.0000e-4
	36	HK,i 50000 HKµ 30 H t 50000+4
	37 – buck_converter_simulation;	num_con [1.1200e- m_op1 buck_co
	38	e op2 bock.co
III - Busy	be DI (]]	solet Le 30 Cel 20
P Type here to search	o # = 🕫 🧿 🏟 🗰 🗿 🖸 🙀 🖌 🖉 🚺	987C Sump ∧ B ⊕ D 0+ A 1214 24 66 202

(Refer Slide Time: 16:05)

Companie - Colora Comm	et 🗟 A 🗊 - 🛃 👂 😢 Oleantarea 🖉	
· · · · Pint · . Find · ind	et U 12 Adette Ter	
Co Control Contro	tor provident ton ted + April 24 + Letture-11 +	
ment Fulder		Command Window
Name -	Buck Converter Control in X Pathoolin X 4	New to MATLABT See resources for Cetting Stated.
back, conv. (CDT, UAC.str. back, conv. Peak, CAC.str. back, conv. peak, CAT, CAC.str. back, conv.utiny, CAT, CAC.str. Back, Converse Control m	1 - figure(1) 2 3 - plt1=subplot(2.1,1);	<i>f</i> x;>>
buck_converter_simulation.m	· priz suspisi((i,i,i))	
buck_converter_VMC.sk buck_converter_VMC.sk.autosave	4 – plot(t_scale,i_L,'r','Linewidth', 2); hold on;	
buck parameter m • Plot buck m'	5 - set(gcf,'color','w'); set(gca,'FontSize',25,'FontWeight','bold','linewidth',2,'FontNam	1e
🚡 var, fra, mix, sig, cont, on, 2015.sk	6 - ylabel('Inductor current (A)','FontWeight','bold','FontSize', 30,'FontName','Times	1
	7 – grid on;	
	8	
	9- plt2=subplot(2,1,2);	
	10 - plot(t scale, V o, 't', 'Linewidth', 2); hold on;	
	11 %plot((t_s+t_step)*1e3, Vref+v_ac,'r','Linewidth', 2);	Workspace
	12 - set(gcf,'color','w'); set(gca,'FontSize',25,'FontWeight','bold','linewidth',2,'FontNam	10 Buck, result bil das
	13 - xlabel('Time (ms)','FontWeight','bold','FontSize',30,'FontName','Times New Rom	12) C 20000 DCM_En 0 delta_lo 20
	14 - ylabel('Output voltage (V)','FontWeight','bold','FontSize',30,'FontName','Times I	
	15 – grid on;	den, con (4.000)
	16	100000
(back.mr (Script)	17 - linkaxes([plt1,plt2],'x')	6 Ge 147 6 13 4400
(D,s+t,step)*Tell, Wef+x,ac, Y, Linewidth), Zg	18	H (), int 1 K, d 1,0000
		10 S000 11 Kp 30
	19	L 5.000e
		ep1 buck,s
		e op2 Buckje
	4 solution	> < Le 10 Col

And we will change the color here, we will change the color to red otherwise we cannot distinguish.

(Refer Slide Time: 16:13)

So, let us run now we are running using the current mode control and it is compared

(Refer Slide Time: 16:19)

So, you can see the current mode control we have not tuned properly, but it is only a pi controller not sufficiently high gain. So, that is why the response is much more sluggish ok.

(Refer Slide Time: 16:28)

But we will discuss how to make the current mode control faster ok.

(Refer Slide Time: 16:32)

So, because we are using an adapted value of pi value. So, if we increase the proportional gain we can speed up the transient performance, but generally current mode control we saw in our earlier course that the current mode control behaves like a first-order system. So, that is why it is kind of an overdamped response. So, unless you do load current feedforward it will be somewhat difficult to speed up very fast within the small signal control bandwidth.

(Refer Slide Time: 17:04)

So, then we can also plot option 3. So, with the same controller setting, we can go for constant on time and we can change the color to let us say magenta.

(Refer Slide Time: 17:10)

So, now we are changing the color to magenta, and let us plot. So, we option three means we are going by peak current mode constant off-time control. So, earlier it was a fixed frequency control on time control sorry fixed frequency peak current mode control.

0 inductor current (A) 2.05 2.1 2.2 2.15 voltage (V) Output 9 2.1 2 2.05 2.15 2.2 Time (ms) 이 바 🖪 🜔 🧿 龄 🗭 👔 🔯 1 0 0 E P Type here to search 12.15

(Refer Slide Time: 17:28)

Now, we are talking about constant off-time peak current mode control.

(Refer Slide Time: 17:31)

You see the response are more or less identical.

(Refer Slide Time: 17:33)

There is no significant change concerning the current mode.

(Refer Slide Time: 17:35)

(Refer Slide Time: 17:36)

(Refer Slide Time: 17:41)

I am talking about red and magenta. They are more or less the same, but the voltage mode control is different because we are using a PID controller and we have discussed earlier that this derivative action is set in such a way it will look like you are providing sufficient damping.

So, it will act like it is retaining some information of current and load information in voltage mode control, but we are not discussing the design procedure here. But for the time being, let us say this is how the two-three methods are compared.

(Refer Slide Time: 18:13)

		P.R.n Sector	
rer Open Save	ert 🔁 🔐 🔄 trassponts Run Run lert 🚺 🔂 Te · · Adv		
FLE INFORTE	EDT BREATONTS	NA CONTRACTOR	
🗢 🔃 🗱 📙 + E. + S.Kapat July 2022. + To be reco			
avent Folder		To be recorded/April 24:Lecture-27:Buck_Converter_Control.m	• x Command Window
Name -	10	X Potheckm X +	New to MATLABT See resource for Getting Stated.
Vprj Bluck, conv.,COT,WMC.sk	(f) This file can be published to	a formatted document. For more information, see the publishing <u>video</u> or <u>belo</u>	
Suck corv. Peak CMC sk	19		algebrai -
buck_conv_peak_COT_CMC.sh buck_conv_valley_COT_CMC.sh	0.0	Buch com Deck CMC data	loop(s),
Buck Converter Control m		='buck_conv_Peak_CMC.slx';	
buck_converter_simulation.m	21		may
buck_converter_VMC sk autosave			have
back parameter in Plot back asy	22 - op3=	='buck_conv_peak_COT_CMC.slx';	
Piet, buck.m	23- T c	ff=((Vin-Vref)/Vin)*T;	trouble
🐧 var, frajmini, sigj cantijan, 2015.uk			solving
	24 - T_c	n_min=T/50;	
	25		> In bu
			L. D.
	26- op4	='buck conv valley COT CMC.slx';	In Bu
	27 - T c	n=(Vref/Vin)*T;	fx
	28 - T_c	ff_min=T/50;	Workspace
	29		Name - Yah
			20 buck,result 2/1 E C 200
	30 - ente	r_file ^I _name= <mark>op4</mark> ;	DCM.En 0
	31		delta_lo 20
	32 %%	Transient parameters and plots	den, can (4.0
	33		enter file, name "bu
			- fm 0.1
(back.m (Sorjet)		m=5e-3; t_step=2e-3;	9 Gc 5/7
433, s+1, step/"Tell, Wef+1, ac, V, Linewidth, Zr	35 – delta	Io=20; delta Vin=0; delta Vref=0;	H (L)# 1
and the stand of the second		_10-20, doing , m=0, doing , 101-0,	
	36		10 N 10 N
	37 - buck	converter simulation;	t Sol true con 112
		_converter_sinulation,	en op1 bu
	38		ep2 ber
	DI (1 1	
Butty			soipt Le 30 C

And the final method we want to compare option 4 which is the constant on time. That is a valley current mode control constant on-time valley current mode control.

(Refer Slide Time: 18:20)

And let us use a green use green color and it may be expected that again the response will be more or less the same as the current mode control. For all three current mode control, we are using the same controller. They should be more or less the same in terms of their transient performance, but different.

(Refer Slide Time: 18:38)

(Refer Slide Time: 18:41)

(Refer Slide Time: 18:43)

So, you can see the transient response of all these three control techniques are more or less the same not fundamentally very different unless you tune it properly ok.

(Refer Slide Time: 18:47)

(Refer Slide Time: 18:50)

So, you can see, that their modulation techniques are different; that means, we have discussed various control technique and their MATLAB simulation.

(Refer Slide Time: 18:59)

So, in summary, we have recapitulated MATLAB customized model development. We have to recapitulate fixed frequency analog voltage current mode control implementation then we have also presented constant off-time analog current mode control and we also discussed constantly on-time analog current mode control technique. So, that is it for this lecture.

Thank you very much.