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Instantaneous Form of Maxwell’s Equations (Contd.) 

So, welcome to this next session of the lecture on Instantaneous form of Maxwell’s equations. 

So, now we have seen that the equations the Maxwell's equations can be represented in the 

mixed circuit and the field quantities form. So, now the question arises as to why we do this 

exercise at all? What is the utility of this exercise?  

If for instance, if Maxwell’s equations so exact that they can analyze everything. Then why 

worry about the circuit quantities? In fact, we will see in many works after we solve a problem. 

We want to express or what we want to find equivalent circuit parameters, for a structure like a 

waveguide discontinuity or discontouring inside a waveguide; or a microstrip patch or any kind 

of radiator.  

So, but why this exercise; because Maxwell’s equation has enabled us to find out exactly the 

input impedance, the matching, the radiation pattern everything. So, then why is the, are the 

equivalent circuit model needed? In fact, in many cases it is difficult to find out the equivalent 

circuit model. But, in planer circuits for instance you can fit the model to softwares like ADS; 

and they will give you if you draw the circuit. 

They will give you the equivalent parameters, which from which you can find the one to one 

correspondence between the design circuit and the equivalent circuit. So, they will essentially 

match the S11 in magnitude and phase essentially many of them just match the magnitude. But, 

ideally they should be matching both the magnitude and the phase of  S11, to give you the 

equivalent network parameters. But, why this, why doing this exercise? 

So, this exercise is done because we are like we are Maxwell’s equations is a very elegant; they 

are very they describe nature in a very-very accurate manner. They are integro-differential 

equations; but unfortunately sometimes they are too elegant for us or too mathematically rich for 

us to get a physical understanding of what is going on. And what do I understand by this physical 

understanding?  



What is the meaning of this physical understanding? By this physical understanding, we mean 

that when we design a circuit we want to, for example find out its more detail about its 

functionality. What is the meaning of more details about this functionality? Let us suppose for 

instance, I have designed an antenna. 
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Let us suppose I will give you an example a Leaky-wave antenna; a Leaky-wave antenna. An 

example of a Leaky-wave antenna might be just a waveguide; so this is a waveguide, and on the 

narrow wall, I have cut a slot. This slot is not of uniform dimension; so the basic physics is as the 

waveguide is excited from the left hand side. So, this is the input port and this is the output port; 

energy radiates from this slot. So, we get we can get a pattern like this for instance.  

Now, this is called a Leaky-wave antenna because as the wave propagates along the waveguide; 

the energy radiates from this structure. Now, the question is in a practical application of this 

Leaky-wave antenna; the one of the very important characteristics is which angle this beam is 

pointing. In the elevation plane, let us say what is this angle of the beam?  

What is the beam angle or the beam direction? And the other question might be how much is its 

directivity that is how much. Whether it is very directive or its directivity is lower; its beam 

width is broader. It is a larger beam width so lower directivity; so, the direction of the beam is 

controlled by the phase constant. So, if this is the z-direction and if kz is the complex 

propagation constant; so, that is given by beta minus j alpha. 



So, this beta is the real part of the complex propagation constant; so this is the propagation 

constant, this is the phase constant, and this is the attenuation constant. So, what happens is that 

as the as the wave progresses down; because the energy leaks. This leakage of energy causes 

attenuation of the wave; and therefore, this attenuation constant.  

So, the direction of this beam is controlled by this term beta, while the directivity how pointed 

the beam is; that is controlled by this term attenuation constant. The lower the attenuation 

constant, the slower the decay of the beam, the more directive of the beam will be. On the other 

hand, the larger the attenuation constant is, the faster the decay of the beam; and the wider the 

beam will be, so the directivity will be lower.  

Now, typically you see that this is a complex environment. Because I would want if possible an 

independent control over the beam width, or the directivity and the direction of the beam. 

Ideally, I would want a different set of parameters which will control my beam width; and a 

different set of parameters which will control my directivity. 

Always this is not for possible; this is an environment in which you know like I want to isolate 

certain parameters to perform which have to I mean to perform certain tasks. In the way I want to 

isolate parameters which have more control over the beam width; and certain parameters, which 

will have more control over that activity. One step towards achieving my goal is if I can identify 

network parameters.  

If I can express the Leaky-wave antenna by means of like an equivalent circuit and from the 

equivalent circuit model if I can isolate certain circuit elements which are responsible for the 

directivity And certain circuit elements which can be responsible for the direction of the beam. If 

it can be found, so this is an example of a scenario, where I would like to find out a circuit 

model; corresponding to my very accurate analysis of the circuit using Maxwell’s equations.  

The same thing will happen in many many kinds of antennas; miniaturized antenna for suppose. 

So, I want to basically see that the coupling problem to the antenna; the reduction of the resonant 

frequency to the antenna. So, these two are distinct aspects of miniaturization. Because, when 

you miniaturize an antenna, when you reduce its resonance frequency, when you reduce its 

resonance frequency; so its coupling will degrade. 



So, which part of the circuit is responsible for the coupling? If I can express the circuit, if I can 

express the physical geometry of the antenna by means of an equivalent circuit; so I can isolate, 

you can try to isolate certain elements of the circuit, which is responsible for the coupling to the 

antenna. Certain elements of the circuit which are responsible for generating particular 

resonances; let us say the first resonance this kind of circuit elements are responsible.  

The second resonance this kind of circuit elements are responsible; so then I can get more control 

over designing or tailoring those resistances. or so those resonances. So, this might be examples 

of scenarios, where we want to gain much more knowledge about the circuit, than its only 

accurate analysis through Maxwell’s equations. So, I will reiterate Maxwell’s equations are very-

very accurate; but they do not lead us to a physical understanding of the circuit.  

Or antenna or guided structure discontinuity in many many cases; for which we would take like 

to take recourse to finding the equivalent circuit parameters if possible. And this is frequently 

done in electromagnetics; so therefore we do not lose sight of the circuit parameters at all; so, 

that must be very very understood. In fact, we try to achieve a one to one relationship between 

the field quantities and the circuit quantities.  

So, the next part we will see how the equations can be expressed entirely in terms of circuit 

quantities; so, the representation entirely in terms of circuit quantities. 
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So, in that sense we can write the equations as sigma v or summation over v is. So, this 

summation denotes summation over a closed contour for a line integral quantity. It denotes the 

summation over a closed contour for a line integral quantity; and summation over a closed 

surface for a surface integral quantity. So, therefore this comes directly from equation number-6; 

what we wrote so summation of v is equal to -
d

dt


.  

So, summation of v is line integral E dot dl; so the summation of all voltages. And then we have 

summation u as ed

dt


, plus i. So, if you look at the second of equation-6 line integral Hin dot dl; 

that is summation over the magneto motive force. And that is equal to 
d

dt


 plus i which is 

unchanged. Then, summation over   is 0, where   is closed integral Bin dot ds. And then the 

summation over e  is q, where e  is integral Din dot ds.  

So, this bunches of equation part into equation number-8; they are the equations you see here 

there is no field quantity, there is no field quantity. We have expressed it purely in terms of 

circuit quantities.  
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So, furthermore, we have equation from equation-7 summation of i as minus
dq

dt
. So, i is equal to 

Jin dot in double integral Jin dot ds; or summation over i is double integral Jin dot ds. Now, if you 

go back to the first of equation-8. It is a generalized statement of Kirchhoff’s voltage law or 

KVL; because it is linking the summation over emf to the time rate of change of the magnetic 

flux. So, it is a general statement of Kirchhoff's voltage law.  



Similarly, this equation is a generalized statement of Kirchhoff's current law. So, these are 

generalized Kirchhoff's voltage law and Kirchhoff's current law. From here we next go to 

constitutive relationships. 
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We next go to constitutive relationships. Electromagnetics links the electric and magnetic field 

quantities; and in addition to that we have material parameters. And those material parameters 

are epsilon and mu, the permittivity of the medium and the permeability of the medium. So, what 

is the linkage? How do they enter into electromagnetics form part of constitutive relationships, 

so, the effects of the material parameters on the field equations? 

And we will also discuss their particular significance; practically, in issues like there are many 

issues. But, we can just take an example to elucidate our point, which is again antenna 

miniaturization. But, first let us write down those constitutive relationships. And we have J in 

equal to f3(Ein, Hin). So, these bunches of equations Din equal to f1 of the instantaneous electric 

and magnetic fields.  

The magnetic flux density is again a function of the instantaneous electric and magnetic fields; 

and the impressed current a function of electric and magnetic fields. Now, what are these 

functions? So, Din it is epsilon zero Ein; it is mu zero Hin, and Jin equal to 0. So, you see the 

parameters mu zero epsilon zero, and mu zero creeping in inside the field quantities. 



Or the inter relationship between the field quantities; so, you see now so we call this equation as 

equation-11. So, epsilon zero is given by we all know its value 128.854 10 ; or 91
10

36
  farad 

per meter. And mu naught is given by 74 10   Henry per meter.  

So, this is the permittivity and permeability of free space. If the matter is different from free 

space for any other kind of matter; then we will have the relationship. 
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Din equal to 
o r
  Ein that is equal to epsilon Ein; where 

r
  is the relative permittivity and epsilon 

is the permittivity. Similarly, Bin equal to 
o r  Hin; that is equal to mu Hin, where 

r the relative 

permeability and mu is the permeability. And Jin is sigma Ein, where sigma is the conductivity; 

so this is the conductivity. This is the relative permittivity and this is the relative permeability.  

And therefore we have epsilon equal to
o r
  ; and mu equal to

o r  . Having said that what is the 

real significance of this? Why do we how does this matter to us? In what way are the medium 

characteristics of the medium parameters important in electromagnetic design? To again see this 

we can cite as we talked about an example. 
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Let us say that we are designing a small antenna; this dipole is radiating in free space. So, when 

this dipole is radiating in free space, we all know that the resonance length of a dipole this is the 

symbol, so the resonant length of a dipole is lambda zero by 2. So, what we understand by 

resonant length? We understand that if this is the frequency; and this is the input impedance.  

So, this input impedance is defined as Rin plus Xin; so this is Rin and this is suppose Xin. So, 

what is the meaning of this Rin and Xin. It means that this is the input impedance to the dipole; 

that is the impedance seen looking at this point. So, if this is the feed to the dipole so impedance 

seen looking at this point; so the dipole current is here. So, it consists of two parts; one is the 

resistive part, another is the reactive part.  

The resistive part results in radiation; it is the real part it corresponds to the real part of the 

radiated power. So, if I express power that is equal to 2
I  Z, this is the complex power; or 

2
I  Z. 

The complex power is 
2

I  Z; so I can express this as 
2

I ( Rin + j X in). So that will be equal to; 

so 
2

I Rin, plus j 
2

I Xin. 

So, that is equal to Pr + j Pi, so this corresponds to the real part of radiated power; and who 

contributes to that? This is the parameter which is contributing to the real part of the radiated 



power Rin. And this corresponds to the imaginary part of the radiated power; and who 

contributes to that? It is contributed by this parameter Xin.  

So, we will go to a bit more details, when we go to the conservation of power. But, then the issue 

remains that from this side when we are matching this transmission line. What do we need? We 

need that we have to see a 50 ohm here. The input impedance look seen here must be 50 ohm; 

because there we have a 50 ohm line. So, this input impedance ideally should be 50 ohm; how 

can it be 50 ohm?  

It can be 50 ohm, if this input resistance is. If this is 50 ohm, and this is 0. Only then, this 

transmission line will see a 0 reactive load here; it will see a 0 reactive load here. And it will see 

an impedance of 50 ohm there; so this is called matching. So, we say that, for matching the 

reactance curve or the X in curve, this X in; which is this curve. This curve should be crossing 

the 0 axis at the resonant frequency; this we call this the resonant frequency. 

So, this is the resonant frequency; we call this the resonant frequency. So, at this point, we have 

the resonance and that length of the dipole is lambda 0 by 2. Now, suppose we want to reduce 

the size of this antenna; suppose we want to make the antenna small. Let us say we want to have 

an antenna which is lambda 0 by 5. So, an antenna which is lambda zero by 5 in length should be 

giving me a decent radiated power or should be resonant.  

So, when will that happen? You see that means the resonant frequency should be shifting to the 

left. So, for a smaller size antenna, the antenna size is small. The resonant frequency should be 

shifting to the left side; so if I move, if I have a situation like this, where this resonant frequency 

shifts to the left. So, this is my new resonance frequency; so this is let us say fr1 and this is fr2.   

So, we can say that this antenna is a smaller; because it has a reduced resonance frequency. You 

can see this more clearly, if I draw an antenna, which is this length; I can make this tell that this 

antenna is smaller. Then antenna is smaller than this antenna, if the length of my second antenna 

is lower than this antenna. Let us say this is l1, if my and this antenna is lower than this antenna; 

the size of l2 is less than 1l.  

And the resonant frequency of this one and the resonant frequency of this one is the same. I have 

achieved miniaturization of this antenna. You will say that because this antenna is smaller and 



the resonant frequency is the same. Or, I can make the size of this antenna the same; and if the 

resonant frequency of this antenna which is fr1, if it is less than fr.  

Then also I will say miniaturization is achieved; because for an antenna which is having a lower 

resonant frequency; its size will be typically larger, its size is typically larger. So, if its size can 

be maintained the same, if its size can be maintained the same as l1. But, its resonance frequency 

is fr1, then I also can say miniaturization is achieved. So, therefore if I move my frequency to the 

left hand side that means I am I am achieving miniaturization.  

So, how can this be achieved? How can this be achieved? So, at least to understand the problem, 

the miniaturization problem; next we will attack how this is achieved. And how the material 

parameters tailoring parameters how does that fit in this picture; so, there will understand the 

significance of material parameters to the miniaturization process. So, let us stop here; we will 

continue from here. Thank you. 


