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Circular Cavity 

So, in this part of the lecture we are going to use the treatment of the circular waveguide to 

the analysis of the circular cavity, which is nothing but the circular waveguide capped by two 

metallic plates at two z- locations. And we are going to find the resonant frequency of the 

circular cavity, the stored energy in the cavity, the power dissipated in the walls of the cavity, 

and thereby evaluate the Q- factor of the cavity. 
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Let us draw the cavity, so this is the z-, this is y-, this is x-, this is phi, this is rho, the radius a  

of the cavity, and the height d of the cavity. As we said it is a section of the circular 

waveguide closed by conductors at z equal to 0 and z equal to d. Therefore, it must be 

satisfying the boundary conditions at z equal to 0 and z equal to d, in addition to the boundary 

conditions for the circular waveguide, namely the vanishing of the tangential fields at rho is 

equal to a . 

So, the additional boundary conditions must be satisfied at this surface and at this surface, 

which means the tangential electric field must vanish at z equal to 0 and z equal to a . So, 

which means the tangential electric fields at z equal to 0 and z equal to a  are E  and E . They 

must both vanish at z equal to 0 and z equal to a. So, we will get if we follow these principles, 



the TM to z- modes, the corresponding  function given by TM

npq  as
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 corresponds to standing 

waves along the z directions. So, this form of function whether it is sin or cos is determined 

by exactly the same logic as we followed for the rectangular waveguide cavity and I leave it 

up to you. So, we follow exactly the same reason that the tangential components of E has to 

finish at z equal to 0 and z equal to d, and we come up with the appropriate sin or cos 

decomposition corresponding to this vanishing of the tangential electric fields at z equal to 0 

and z equal to d. 

So, whatever wave function along the z direction satisfies this vanishing of the electric fields 

at z equal to 0 and z equal to d must be chosen and this choice is exactly the same as in the 

rectangular waveguide or follows the exactly the same principles as we did for the 

rectangular waveguide. So, n is equal to 0, 1, 2, p equal to 1, 2, 3 and q equal to 0, 1, 2.  
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Similarly, the set of modes corresponding to the TE to z modes of the cavity, the potential 

functions corresponding to the TE to z- modes will be given by TE

npq  as 

J
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. Again the choice of this sine function should be easy for 

you to find out and I leave it up to you. 

So, n is 0, 1, 2, p equal to 1, 2, 3 and q equal to 1, 2, 3, because it is a sine function. So, the 

separation equation for the TM and the TE mode becomes, for the TM mode we 

have
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And for the TE case, the same equation 
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 that is 43. Now, since k is equal 

to the familiar 2 f  . We can solve for the resonant frequencies of the cavity from these 

two expressions. 

So, fr the resonant frequency of the cavity correspond corresponding to the npq TM mode is 

given by  
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TE mode, so these two expressions yield the resonant frequencies of the cavity. 
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Now in order to find out the Q factor of the cavity, the quality factor of the cavity we 

specialize to the TM010 mode, so the quality factor of the dominant TM010 mode, dominant 

for small values of the cavity height. We need to find out the fields, because we need to find 

out the energy stored. For that we need the fields, and we need the power dissipated on the 

walls for which we need the fields. 

So, first of all we need to find out the  function for the TM010 mode. So, the 010

TM  to z 

mode is given by 01
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. So, n is 0 that means uniform variation along the phi direction 

the azimuthal variation of the field is uniform and the distribution of the field is also uniform 

along the z direction, because there also we have q as 0. 

Only p is 1, so therefore the psi function becomes 01
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and from there we can find out 

all the field components. From 21 we have Ez given by 
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, we call this as equation 47. So, we note that
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 this term is 0. 
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Then from equation 19 we can find out the magnetic field component H  that is 
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, which is 48, so we know Ez and 

we know Hz. Now we can calculate the stored energy in the cavity, please verify what 

happens to the other field components; please verify that yourself why we have considered 

only Ez and Hz.  

The store energy in the cavity is given by W is equal to 
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Now in order to find out the power dissipated in the conducting walls of the cavity we need to 

find the corresponding tangential magnetic fields on the walls of the cavity, so we go to 

equation number 19 for that TM to z modes and from 19 we obtain H  as 
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variation, so this is 0, H  is 0.  
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. So, power dissipated in the conducting 

walls is given by
2
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; that is equation 50, where R 

is the intrinsic wave resistance of the metal walls, so R is the intrinsic wave resistance of the 

metal walls.  
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So now, the Q of the cavity is given by
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which we already found out that is equal to 
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. Then that becomes on simplification 
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So, this finally yields the expression of the Q factor of the cylindrical cavity which is very 

important for characterizing the cavity in terms of the stored energy and the power dissipated 

on the cylindrical cavity walls together with the end caps. So, this completes our treatment of 



the cylindrical cavity and the entire chapter on cylindrical wave function circular waveguide 

and cylindrical cavity. Thank you. 


