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Lecture 62 
Cylindrical Wave Functions (Contd.) 

Welcome to this part of the lecture on the circular waveguides. So, here we are going to utilize 

our previous treatment of the cylindrical wave functions particularly the TE to z and TM to z 

decompositions of the cylindrical solution to the cylindrical Helmholtz equation to the treatment 

of the circular waveguide and see that they yield the propagation constant of the circular 

waveguide in terms of the TE to z and TM to Z modes. We are going to compute the propagation 

constants. And also, we are going to find out from these expressions the cutoff frequencies for 

the TE to z and TM to z modes and the characteristic impedances of TE to z and TM to z modes. 
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So, for the modes which  are TM to z we may express the field, as we said, in terms of the 

decomposition A equal to zuψ . The solutions we obtained for the electrical and magnetic fields 

for this corresponding to this substitution A is equal to zuψ .  

Now the field is finite at rho equal to 0. So, the wave functions must be of the form of 16. So, we 

wrote down in 16 that the circular waveguide, this is my circular waveguide. This is the centre. 

This is my rho. This is my phi. So, because the point of interest includes this region, which is rho 



equal to 0, the field decomposition inside the circular waveguide must be of the form of 16 

where we use the nth order Bessel function of the first kind for describing the fields along the rho 

direction. 

So therefore, we can write the psi function in terms of ( )nj kρ ρ . Instead of jne φ , we can write that 

as ( )sin nφ , ( )cos nφ , and for the forward propagating wave along the plus z direction, the 

variation of the fields or the appropriate eigenfunction given into the form of zjk ze− . We call this 

equation 25. 

So, either ( )sin nφ  or ( )cos nφ  may be chosen. So, we have a mode degeneracy. That means two 

kind of field distribution corresponding to the single eigennumber n; the two distributions are 

equally possible. They are given by Helmholtz equation. they are equally possible solutions 

corresponding to a particular value of n. This is called mode degeneracy except for the case n 

equal to 0 when sin n phi vanishes and cos n phi become 1. So, that means cos n phi becomes 1, 

means the field is phi invariant, that is, it does not depend on phi. So, except for the case n equals 

to 0, we have the mode degeneracy along the phi direction.  

Now if we go to the electric field expressions for the TM to z mode from equation 21, so from 21 

we can write Ez as
2

2
2

1 k
j z

ψ
ωε
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. That is, ( )2 21
zk k

j
ψ

ωε
− . Performing this differentiation 

corresponding zjk ze− , so we call this equation 26.  
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Now, as per the conditions of the circular waveguide because this is a PEC boundary, this is a 

conducting wall, so Ez must vanish at rho equal to a which is corresponding to the radius of the 

circular waveguide. So, we call this as a which is the radius of the circular waveguide. So, Ez 

must be equal to 0 at rho is equal to a. And if Ez must be 0 at rho equal to a that means ( )nj k aρ  

must be equal to 0, because that is the only way Ez is equal to 0 at rho equal to a from equation 

number 25. We substitute rho equal to a here. And ( )nj k aρ  must be equal to 0 at rho equal to a. I 

mean that is why we substituted rho is equal to a.  

So, corresponding to this the eigenvalues for kρ  will be determined. So, kρ  will be equal to npX  

by a. or k aρ  is equal to npX . So, these are the roots to this equation 27. So, npX  are the roots to 

equation number 27 corresponding to the zeros of the nth order Bessel functions of the first kind. 

So, we call this equation number 28.  

So, substituting this into 25 we get the TMnp mode functions, so which is TM
npψ  will be Jn. Instead 

of kρ  we will substitute npX
a . So, np

n

X
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ρ
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zjk ze− , so which is equation number 29 

where n can be 0, 1, 2 etc and p can be 1, 2, 3 etcetera.  

For a particular value of n = 0, p can vary between 1, 2, 3, 4, 5, 6, infinite. It can contain infinite 

number of values. Then corresponding to n equal to 1, again p can take infinite number of values. 



So, as we said, so these are the roots to equation number 27 corresponding to the zeros of the nth 

order function Bessel function of the first kind.  

So, the electromagnetic field is then determined from equation number 19 and 21 with this psi 

function. So, we saw that 19 and 21 gives the electric and magnetic fields of the TM to z modes. 

So, the electric and magnetic fields for the TM to z modes inside the circular waveguide can be 

determined from this psi function by substituting this psi function into equation number 19 and 

21.  
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Then, the mode phase constant kz can be determined because 2 2 2
zk k kρ + = . And we substitute 

instead of kρ , npX
a

 from equation number 28. So, because 2 2 2
zk k kρ + =  square, this will 

imply
2

2 2np
z

X
k k

a
 

+ = 
 

. So, this is equation 30. So, from this, the values, the propagation 

constant kz can be determined at a given frequency for a given radius of the circular waveguide a 

for a particular mode corresponding to n and p. 

Similarly, for the modes TE to z they are expressed in terms of the electric vector potential F 

having only z component of psi. So, this wave function must be of the form of 25. So, the wave 

function must be of the same form as 25. But we have to now substitute into the circular 

waveguide boundary condition corresponding to the fields of TE to z modes. So, because Ez is 0 

we have to work with Ephi which will also vanish over the wall ρ  is equal to a.  
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So, Ephi which is ψ
ρ

∂
∂

 from 22 must be equal to 0 or must vanish at rho equal to a. So, you can 

easily see that 22 gives the electric fields for TE to z mode. And Ephi is ψ
ρ

∂
∂

. And therefore if 

this has to be true we differentiate once with respect to rho. So, therefore Jn dash k rho a must be 

equal to 0 at, and therefore ( )nj k aρ′  must be equal to 0.  

Now we know that Jn are oscillatory functions. We have found out or we have discussed before 

that Jn are analogous to ( )cos kρ . So, they are oscillatory functions. So, Jn prime or Jn dash k 

rho a must also be an oscillatory function. So, we can satisfy this equation which is equation 31 

by choosing kρ  as npX
a

′
, which is equation 32. So, npX ′  corresponds to the roots of equation 

number 31, and also corresponding to the ordered zeros of the derivative of the Bessel function.  

So from 32, the wave function for the TEnp mode can be written as TE
npψ  as Jn, now instead 

of k aρ  we write npX
a

ρ
′

, the degenerate harmonic functions along the phi directions which 

is
( )
( )

sin

cos

n

n

φ

φ



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 zjk ze− , where n is 0, 1, 2 and p is 1, 2, 3. 
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And now the mode propagation constant is again given by the same expression 2 2 2
zk k kρ + = . So, 

substituting for kρ  we get, that is
2

2 2np
z

X
k k

a
′ 

+ = 
 

, which is equation number 34. Now the cutoff 

wave number for a mode similar to the rectangular waveguide is that for which kz will vanish, 

the mode propagation constant will vanish.  

So, from equation 30, corresponding to the TM to z mode and from equation 34 corresponding to 

the TE to z mode, we obtain ( )TM
c np

k  as npX
a . And ( )TE

c np
k  we can write as npX

a
′

. So, kc becomes 

the cutoff wave number.  

So, if k is greater than kc we have a propagating mode and if k<kc, the mode is cutoff.  
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If we write kc as 2 cfπ εµ , we obtain the cutoff frequencies ( )TM
c np

f  for the TM mode 

as
2

npX
aπ εµ

. And ( )TE
c np

f , the cutoff frequency for the TE mode as
2

npX
aπ εµ

′
. So, this is the cutoff 

frequency for the TM mode. This is the cutoff frequency for the TE mode. So, we call the sets of 

equations 36. Setting kc is equal 2

c

π
λ

 where cλ  is the cutoff wavelength.  
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We can obtain similarly and easily the cutoff wavelengths corresponding to the TM and TE 

modes as ( ) 2TM
c np

np

a
X
πλ = . And ( ) 2TE

c np
np

a
X
πλ =
′

. So, we call these equations 37. So, we see that the 

cutoff frequencies are proportional to npX  for the TM modes, and they are proportional to 

the npX ′ , for the TE modes from equation number 36. 

Now the modes in ascending order of cutoff frequency are TE11, the lowest order mode or the 

dominant mode in the circular waveguide followed by the TM01, then TE21, then TM11 and TE 

01 which is degenerate with the TM 11 mode. That means they have the same cutoff frequencies. 

So, the modes of the circular waveguide have the z-directed wave impedances as we found in the 

rectangular waveguide, and we can find them out easily.  
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So, for the TM mode we have Eρ  as
21

j z
ψ

ωε ρ
∂
∂ ∂

. And this we can find substituting the appropriate 

psi function for the TM mode. And we can also find out Hφ  as ψ
ρ

−∂
∂

, substituting for the 

appropriate psi. And then TM
oZ  is going to be given by

E
H

ρ

φ

.  



So, if we do this, this becomes
( )
( )

sin

cos
znp jk zz

n

nXjk J e
j a n

φ
ρ

ωε ρ φ
−

  − ∂ 
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. So, one differentiation 

with respect to rho, another differentiation with respect to z.  
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And for the TE mode if you have to compute
E
H

ρ

φ

, we just find Eρ  as 

( )
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n
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a n
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ρ φ φ
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. So, this expression has been obtained previously for the TE to 

z mode, this should be minus.  



And Hφ  is
2

j
z

ψωµρ
φ
∂
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, and that is equal to
( )
( )
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. And 

therefore, from here we can find the TE
oZ  as

E
H

ρ

φ

 that is
z

j
jk

ωµρ
ρ

−
−

. So, that is
zk

ωµ . So, this is 

equation 39.  

So, this completes our treatment of the circular waveguide in terms of the propagation constant 

of the TE to z and TM to z modes, the cutoff frequencies and the characteristic impedances of 

the TE to z and TM to z modes. Next we are going to utilize the knowledge earned from the 

circular waveguide to the investigation of the circular cavity. Thank you. 


