
Advanced Microwave Guided-Structures and Analysis 

Professor. Bratin Ghosh 

Department of E and ECE 

Indian Institute of Technology, Kharagpur 

Lecture 60 

Cylindrical Wave Functions (cont.) 

So, we have been discussing regarding the cylindrical wave function and solution to Helmholtz 

equation, the source free Helmholtz equation in the cylindrical coordinate system, the solution in 

terms of  ,  and z and what are the characteristics of the so called solutions which satisfy the 

Helmholtz equation and we came to the point where the  can be expressed as a summation over 

the azimuthal wave number n and kz and summed up over the elementary wave functions. So, let 

us continue from there.  
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We can also integrate over the separation constants though the value of n is usually discrete, this 

n is usually discrete. So, we will come to that later when we will find that equation number 10 

will be satisfied by functions which are in the form of jne   which is    cos sinn j n  . So, it 

will be usually expressed in terms of the cosine and sine terms or a combination of  sin n  

and  cos n  terms. So, the value of n will usually be discrete.  
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So, now, we can write the possible solution to Helmholtz equation as 

       
z

n z n z z

n k

f k B k h n h k z dk   which is equation 14. So, these can also be possible 

solutions to Helmholtz equations and here we integrate over the separation constants because n is 

discrete we express the summation over n and express the summation over kz it in terms of the 

integral over kz.  

So, we can also express  as        n n z

n k

g k B k h n h k z dk



    . So, these kinds of 

expressions are also possible because we appreciate the fact that k  and kz these two terms are 

ultimately inter related through the equation 2 2 2

zk k k    which was equation number 8.  

So, in many cases these kinds of alternate interpretations are very-very important because in 

many cases of the cylindrical coordinates, we will find the integration over kz or integration 

over k  poses different features. In many cases, one formulation can be referred to as the 

Sommerfeld formulation and another formulation can be referred to as the Schelkunoff 

formulation and these Sommerfeld and Schelkunoff formulation corresponding to integration 

over kz or k  can have distinct different features when we plot the integrand over kz or k  or 



when we compute the integral due to different generic forms of    n z zf k h k z  and    n zg k h k z  

in addition to  nB k .  

So, these functions are combinations of the function    n z zf k h k z  which in this integration 

kernel is a function of kz. Integration of this function over kz can have distinctly different 

features then integration over this kernel which is    n zg k h k z  integrated over k  that is why 

these alternate formulations are very important in the cylindrical domain. At this point we all 

realize their importance.  

So, these integrations can be over any contour in the complex plane and  n zf k  and  ng k  are 

functions to be determined from the boundary conditions. Now, you might ask me suddenly that 

where these contour integrations come because it appears that zdk , dk  are real numbers.  

The concept of contour integration comes because for this integration path which is 

       n z n z z

k

f k B k h n h k z dk



   there can be singularities of these functions in terms of poles 

or in terms of more complex singularities in that form of branch points which we are not going to 

discuss at this level.  

So, because in the path of integration of equation 14, when we are integrating over zk  we will 

encounter poles of    n z zf k h k z . We have to deform the path of integration and generalize this 

integration real axis integration of kz into the complex plane and thereby the concept of contour 

integration comes. So, we are going to go to the complex plane and integrate over 14 and 15. So, 

we would not go further in that direction because it is going to lead us to more advanced 

treatment of cylindrical wave functions which are not really part of this course.  

Now, on the other hand, we are going to focus on the nature of  nB k and when to use different 

forms of  nB k . We already said that  nB k  can have four distinct 

forms  nJ k and  2

nH k  if the field is finite. At   equal to 0 if the field is finite  nB k  

must be  nJ k . Because all other functions lead to non computable values.  



It can be extremely large values in the negative sense. But, they have a singular behavior that 

is  nN k ,  1

nH k ,  2

nH k  and will have non-computable singular values as their argument 

as the as their argument k  becomes 0. Because we are dealing with the spatial location we are 

not concerned with the behavior of k  here we our concern is over the rho variable. 

So, what happens to these functions as rho changes? If at rho equal to 0, on the centre of the 

cylindrical coordinate system the field is finite, in order to describe this finite behavior the 

appropriate wave function along the radial direction must have to be  nJ k  and not otherwise. 

This has to be very-very carefully born in mind.  

Because inappropriate choice of functions is absolutely not acceptable anywhere. So, we must 

absolutely know the proper recipe to use or the proper function to use to describe the wave 

behavior under the different circumstances or in the different spatial locations.  
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So, in this case, the elementary wave functions will be of the form
, , zk n k

  equal 

to   zjk zjn

nJ k e e  with rho equal to 0 included. We have already encountered this function 

before as a solution to equation number 10 and we note that equation number 11 is pretty much 

of the same form as equation number 10.  



So, solution is going to be zjk z
e . This equation number 11 is also of the similar type which we 

meet in the rectangular wave decomposition of the psi function when we apply the separation of 

variable to the psi function or which describes the Helmholtz equation in the rectangular 

coordinate system. We come across exactly the same equation in the z-direction and the x- 

direction and the y-direction as equation number 11.  

And solution is of these form. We are always aware of this because the solution in the 

rectangular wave coordinates is either    sin ,cosx xk x k x  or xjk x
e . So, we just recall or compare 

with the rectangular coordinate system where the solutions could be    ,sin ,cosxjk x

x xe k x k x
  in 

the x direction. It can be    ,sin ,cosyjk y

y ye k y k y


 in the y-direction or it can 

be    ,sin ,coszjk z

z ze k z k z
  in the z-direction.  

So, this is the description of the rectangular coordinate system. So, we already know the origin of 

this function from the equation which is exactly similar to equation number 11 which we 

discussed here. So, we call this equation number 16. So, note that this function on the other 

hand  nH k  are the only solutions, which will vanish for large rho if k  is complex and 

therefore, they will represent outward travelling waves that are going in this direction in 

increasing rho and include the region rho equal to infinity.  

If our point of interest includes rho equal to infinity and has to describe outward travelling 

waves, then this is the only function that can be used to describe such behavior. So, they will 

represent outward travelling waves if k  is real therefore, if there are no sources at 

infinity  nB k  must be  2

nH k , if rho equal to infinity or rho tends to infinity if this region 

is to be included.  

Hence, in this case the  function will become
, , zk n k

  equal to  2 zjnk zjn

nH k e e which is 

equation number 17. So, here rho tends to infinity. The region rho tends to infinity is included. 
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We can also make some qualitative analogies or qualitative comparisons for the cylindrical wave 

functions. For instance,  nJ k  is analogous to  cos k ,  nN k  is analogous 

to  sin k ,  1

nH k  is analogous to
jk

e   or incoming waves from infinity and  2

nH k  is 

analogous to
jk

e 
 outgoing waves.  

So, now, we are armed with finding out the solution to the cylindrical wave equation in terms of 

the TE to z and TM to z modes. So, similar to the rectangular coordinate system where A is 

equal to zu  the psi gives rise to the TM to z mode. And F equal to zu  psi gives rise to the TE 

to z modes.  

In this case, the same substitution made in the cylindrical coordinate systems will yield the same 

kind of modes namely the substitution A equal to zu  in the cylindrical coordinate system will 

yield the TM to z cylindrical modes and the substitution F equal to zu  is going to yield the TE 

to z modes.  

However, the cylindrical interface problem is more involved than the rectangular problem 

because in a rectangular dielectric interface if this is an epsilon1 this is mu1, epsilon2, mu2 and 

incident TE wave in this direction is going to be reflected as our TE wave and transmitted as a 

TE wave. Similarly, an incident TM mode in this direction is going to be reflected as reflected 

TM mode and a transmitted TM mode.  



So, this is the nature of the rectangular isotropic dielectric to dielectric boundary. So, this is a 

boundary between two dielectric medium. Let us continue this boundary. However the same is 

not true unfortunately for the cylindrical dielectric boundary making the cylindrical boundary far 

more complex than the rectangular boundary which means that if I have a cylindrical boundary 

here, so, if this is epsilon1 mu1 and this is epsilon2 mu2. The incident TE mode is going to give 

rise to a reflected TE mode as well as reflected TM mode and also a transmitted TE or TM mode 

and the similar situation will occur if this is TM mode. So, an incident TE mode incident at a 

dielectric to dielectric cylindrical boundary is going to yield reflected TE and TM types of modes 

giving rise to hybrid mode propagation in cylindrical waves or cylindrical dielectric structures.  

However, we say that the modes TE and TM are decoupled at the planar or rectangular boundary 

whereas the modes TE and TM they are coupled at a cylindrical boundary. So, as a result of this 

if we want to characterize the cylindrical boundary in terms of reflection coefficients, we have to 

go towards the reflection matrix instead of the reflection coefficient here because the reflected 

field is described only in terms of the reflected TE/TM mode.  

If you talk of the reflection coefficient here the question immediately arises are you talking of the 

reflected TE mode or the reflected TM mode. So, therefore, in order to describe this complex 

behavior for the cylindrical wave system or the cylindrical guided wave structures particularly 

cylindrical dielectric guided structure we have to take recourse to the reflection matrix instead of 

the reflection coefficient which characterize the planar medium.  

So, these are the like the distinctions, inherent distinctions between the planar or the rectangular 

and the cylindrical like the dielectric to dielectric interface. So, now, before we do that we must 

also remember that in this case if this is our PEC boundary as we are interested in a PEC 

boundary in this course, if this boundary is a PEC and this is going to plus infinity and this is 

minus infinity the modes TE and TM are decoupled. They are decoupled. Because this boundary 

is our PEC boundary or a perfectly electric conductor boundary as in the case of the circular 

waveguide.  

Therefore, in the circular waveguide the TE and TM modes are decoupled because this boundary 

this boundary this boundary and this boundary the whole thing that mean is the single boundary. 

The whole thing is metallic. In such a case, for the cylindrical coordinate system the TE and TM 

cases will be decoupled.  



But, if the same circular waveguide is coated by a dielectric layer, so, if this is epsilon1 mu1 and 

if this is o , o  in the dielectric layer inside the dielectric layer the modes will be coupled.  

So, this will be a very practical problem. If I want to have, for instance a conformal patch here 

and fed by a coaxial probe from here. So, the inner conductor of the coaxial probe will be 

touching the patch to a hole and the outer conductor will be shorted to this ground plane. So, 

these situations are going to arise in the design and rigorous analysis of all kinds of conformal 

antennas on cylindrical surfaces where regardless mode coupling has to be considered at the 

dielectric regions.  

Otherwise, your analysis is going to be extremely inaccurate, it cannot describe the wave 

behavior in these regions. So, this is important. However, we are not going to go to such 

advanced treatments. We will be limited in our analysis to the circular waveguide. Before we go 

to the circular waveguide however, we have to as we said we have to describe the solutions the 

electric and magnetic fields for A equal to zu  and F equal to zu . So, which we will do in the 

upcoming future lecture. So, let us stop here. Thank you. 

 


