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Hello everyone, today we will solve numerical problems based on partially filled 

waveguide. 
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The first one is show that the resonant frequencies of a partially filled rectangular cavity 

are solutions to the transcendental equation given by 

    1 2
1 2

1 2

tan tanx x
x x

k k
k d k a d

 
  with,

2 2

2 2

1 1x

n p
k k

b c

    
     
   

and

2 2

2 2

2 2x

n p
k k

b c

    
     
   

. 



(Refer Slide Time: 01:02) 

 

So, we will start solving the problem, so in the question we have partially filled 

rectangular cavity. We can draw this as, so this will be x axis, this is y and it is a 

rectangular cavity. So, in this we have said, and since this is partially filled so this is the 

origin 0 and then this will be a, this is b. Let us denote this point as d so this one is filled 

with epsilon 2, Mu 2 and this is epsilon 1 Mu 1. 

So, this is partially filled rectangular cavity so we will have additional conductors 

covering the z equals to 0 and z equals to c. So, at both the ends we are having at z equals 

to 0 and, as z equals to c we are having conductors placed. So, for this we can write the 

potential functions as. 
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To start with, we will start from writing 1
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and now, what we will do, we will find out all the fields and then from the continuity 

equation we will try to find out the transcendental one.  

So, we can write E1 as Ey1 will be
2

1

1

1

j x y







 
. So, we can 

write  
2

1 1

1

1
cos sin inx

n y p z
c k x s

j x y b c

 



     
          

.  

Which gives us  1 1

1

1
cos cos inx

n y n p z
c k x s

j x b b c

  



      
           

. 



(Refer Slide Time: 06:08) 

 

So, now we will differentiate with respect to x, so it will 

be  1 1 1
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So now, we will differentiate the above with respect to x. So, we will 
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So, therefore, we can write Ez1 as  1 1 1
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give this equation as equation number 4. Therefore, so now we have Ey1, Ey2, Ez1 and 

Ez2. 
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Now, from continuity of field quantities, we can write so from continuity of field 

quantities, we can write     1 1 1 2 2 2
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. Let us denote this as equation number 6. So we 

have now Hy1 with us. Now, we will calculate Hy2. 
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So, Hy2 will be 2
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Therefore, we can write Hz1 as minus of  1
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9. 
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So, again from the continuity of field equations, we can write so again from the continuity 

of field quantities, we can write     1 1 2 2cos cosx xc k d c k a d  . That is at x equals to d, 



we are checking the continuity of the field equations. So, this is at x equals to d fine, so 

this is, this one again we are getting from the continuity of field quantities. 

Now, we will divide this equation with the equation number, this 5 so we will divide 5 
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So thus, we can see, so c1 c1 will cancel out, this c1, this c1, this c2, c2. So, we will have 

kx1 upon epsilon 1 so sin kx1 d upon cos kx1 d will give us tan kx1 d is equal to so this is 

minus so we will have, kx2 upon epsilon 2, tan of again kx2, a minus d. So, thus 

satisfying the given condition, so that is all for today thank you so much. 


