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Professor Bratin Ghosh
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Lecture 57
Analysis of Guided Structures Tutorials

Hello everyone, today we will solve some numerical problems on partially filled waveguide.
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Consider the dominant mode of the partially filled guide for b>a as
shown below. Denote the empty guide propagation constant (d=0) by

and show from the Taylor expansion of the transcendental
equation about d=0 and k= - /%, that for small d

So to start with this is our first numerical problem, and it states that,

Consider the dominant mode of the partially filled guide for b>a as
shown below. Denote the empty guide propagation constant (d=0) by

ho=ki-(5 |

and show from the Taylor expansion of the transcendental
equation about d=0 and k= - /3, that for small d
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So, we will start solving this problem, so at first in the given question,
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So, therefore we can write like this, that the problem therefore, the problem contains,
therefore the problem contains, two homogeneous regions that is, from one from 0 to d where
x is ranging from 0 to d and the other one when, x is ranging from d to a. Now, such
problems can be solved by finding solutions in each of the regions, such that the tangential

components of each are continuous across the common boundary.

So, therefore satisfying the boundary conditions at the conducting walls, we can write down,
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Now, it has been anticipated that
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So, we can denote these two equations as number 3 and equation number 4.

Now, then we can find out the fields and after finding out the fields an imposing the boundary

conditions and the matching at the boundary we can write
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this one can be written down as, transcendental equation and this is used for determining all

the possible k; values, where k: is the mode propagation constant.
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Now, when d is small, then the above equation can be approximated as
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so let us denote this equation as equation number 6.

Now, what we will do, we will write, this equation by denoting it as a function of kz and d so

we can tell
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Let us give this as equation number 7.
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So, this is equation number 8. Now what we will do, we will substitute this value.
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So, let us denote this equation as equation number 9.

Now what we will do, we will write down the Taylor expansion,
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So, here we have neglected the second order and all the higher terms, so now, in this general

formula we will, place.
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so this is equation number 10. Here, we have neglected second order and higher terms.
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so this is equation number 11.

Now, we will find out
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so this is equation number 12.
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Now, we will

fz(nh o) = - 20, (?QD —
ODB =~ @ :
So, let give this as equation 13.

Now, we will substitute, all these values that is equation number 11, 12 and 13 in equation
number 10, so substituting 11, 12 and 13 in 10.
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We will get,
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So, thank you on next class we will gain solve a some few more problems on partially filled

guides, thank you.



