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Radiation from a Magnetic Current Source (Contd.) 

So, welcome to this session of lecture, we will be continuing with the radiation from the 

magnetic current source, which we had been discussing in the previous lecture, and we are also 

going to illustrate the significance of the magnetic current, its relevance and it is extremely 

important in electromagnetics particularly in the computation of Green's function for 

electromagnetic field problems. 
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So, last time we had derived the electric field components for the magnetic current source, so 

now we are going to derive the magnetic field components. So, for derivation of the magnetic 

field components, we will be needing two operations, one is divergence of F, and another is 

gradient of divergence of F. So, let us compute the divergence of F.  

So, the divergence of F will be 2
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Potentials, so we get 
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Which finally gives me divergence of F as 
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 and that is equation 16. 

Now we proceed to calculate grad of divergence of F. So, grad of divergence F equal to 
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. So, that is 17. So, now we can calculate the value of the magnetic field all the r, theta and phi 

components of the magnetic field. 
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So, we know from equation 9, H is minus j omega epsilon F plus 1 by j omega mu gradient of 

divergence F, so from which the radial component of the magnetic field or the r component of 

the magnetic field will be
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. So, we now 

need to calculate these two terms.  
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So, now therefore the radial component of the magnetic field becomes 
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. So, we call this equation 18.  
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In equation 18 the term k by omega mu equal to omega root mu epsilon by omega mu that is root 

of epsilon by mu that is 1 by eta. Similarly, we will get H theta as 
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So, that is 19 and.  
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And H phi will be 0 that is equation 20. So, these are all the electric and the magnetic field 

components for the magnetic dipole, and these can be compared with those for the electric dipole 

and they will be found to be duals of each other. So, let us stop this topic here, we will be next 

investigating the significance of the magnetic current and its relevance in the computation of 

electromagnetic fields. Thank you.  


