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Instantaneous Form of Maxwell’s Equations (Contd.) 

Welcome to the next session on Instantaneous form of Maxwell’s equations.  
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We next focus our attention on what we call the generalized current concept. We saw that we 

deal with the right hand side of the equations; we have these terms
B

t




, or
D

t




 and impressed 

current; that is what we saw in Maxwell’s equations. So, what we want to do is that we do not 

want to keep those terms 
D

t




and impressed current to be separate. So, we would like to bring all 

those terms close together. We want to club those terms in a total current. We do not want to 

distinguish between impressed current and
D

t




. 

That way it is easier to manipulate Maxwell’s equations. So, we will say in this new form of 

Maxwell’s equations that actually the 
D

t




 term is one particular kind of current that generates 

the field and J is another type of term which generates the field. I mean the magnetic field in this 



case. And similarly for the other equation we have the term -
B

t




. So, that is the term which is 

responsible for the electric field; so that way it is easier to manipulate the the terms. 

So, therefore we say t

in
J  is c i

in in

D
J J

t


 


. So, this is the total electric current; this term is called 

the electric displacement current, this is the conduction current; and this is the electric impressed 

current. So, you will call this equation, equation number-14. So, if we compare this with 

equation-1; we will see that the term in equation-1, which is
in

J . It is given by 
c i

in in
J J ; so it is 

the impressed current plus the conduction current. In this case it might be useful to understand 

when we were referring to the process of radiation previously. 

We said that the radiated power was contributed by the real part of the complex power. Now, this 

real part of the complex power is basically composed of two parts; we will come to that. But, 

before we do that we have to first of all get a little bit prior idea, as to the physics of what is 

happening. And that is the real part of the power consists of the power, which is lost as ohmic 

loss in the conductor and the power that is radiated. Both of this power contribute to the real part 

of the power, and contribute to the matching problem. 

But, the part of the power which is radiated, which is the real part of the power is the desired 

power for the antenna. The other part, which is lost in the ohmic loss, which is lost as ohmic loss; 

which is the power due to c

in
J ; the conductor power, the power due to the current in the 

conductor. This contributes or this generates ohmic loss; or this is the source of ohmic loss. So, I 

will again repeat that this ohmic loss this will heat up the conductors; but they will contribute to 

the real part of the power. 

But, we want to maximize the radiated power for the antenna; we want to minimize this power 

loss. But, both of them will be contributing to the real part of the complex impedance; which is 

the resistive part of the complex impedance. So, the resistive part of the complex impedance will 

be contributed by both c

in
J  and the radiated power. We will come to that, but this is a very 

important concept. Why it is an important concept? Because you might feed power to an 

antenna; and you might see that the antenna is giving me very acceptable reflection coefficient. 

No reflection, no reflected power; it does not mean that the antenna is radiating. For example, if I 



have a structure like this again, I feed power. Particularly this can happen in a miniaturized 

antenna scenario, where the efficiency of such an antenna degrades. You might see that you are 

getting an S11 versus frequency, or a reflection coefficient; S11 is reflection coefficient mod 

gamma versus frequency to be like that. You might get a dip of minus 20 dB here at this point; 

so let it let this be 0 dB. So, it cannot be above 0 dB, so let me just modify; so this is 0 dB. 

So, at this point you might imagine that we are getting a very good match to the antenna that is 

fine. You are indeed getting a very good match to the antenna; but it does not mean that this 

antenna is radiating. This does not mean that the antenna is radiating, why? Because it means 

that somebody is absorbing power from you. So, the power is not reflected back at you; but who 

is that somebody?  

There can be two candidates. One the power is taken by completely by the ohmic loss; so this is 

the component which is causing heating of the patch; heating of all these metallic surface, 

heating of the patch, heating of the ground plate or it can be contributed by a mixture of radiated 

power, and this ohmic loss powers power loss due to ohmic loss. Or, it can be like mostly 

radiated power; so, this third situation is what I would like.  

I want mostly to maximize this, I want to maximize this and minimize these quantities. That is I 

want to minimize this ohmic loss; and maximize my radiated power. And therefore in order to 

see that this is indeed taking place that we are getting a decent amount of radiated power; we 

have to measure the antenna gain. If we measure the antenna gain, or if we simulate the antenna 

gain and if you get a decent gain that means we are radiating a decent amount of power; and 

most of the power probably is radiated, and we need not worry.  

But, if we get a good match and we do not get a good gain; it means that mostly the power is 

getting to hit the conductors. And therefore the power is due to the conductor loss term or the 

ohmic loss terms, which is undesired. It is not desired, this power loss is not desired. But, 

whether you like it or not, this is going to take place; and this is the role of this conduction 

current. 

So, because of the symmetricity of Maxwell’s equation, we are going to consider this term 
B

t




 

as the magnetic displacement current; we call this the magnetic displacement current. And 



therefore, t i

in in

B
M M

t


 


. So, this is the total magnetic current, this is the magnetic displacement 

current; and this is the impressed magnetic current. It must be remembered here that magnetic 

sources do not exist in nature; so, this is actually a fictitious quantity. It does not exist in nature, 

but yet we invoke magnetic current; we invoke the concept of magnetic current. 

Why the concept of magnetic current is invoked? We will come to a later lecture, which will be 

devoted on the concept of magnetic current, and its utility in electromagnetics. So, let us preserve 

that for later. Now, accept the the existence of the magnetic current; so, we call this equation, 

equation number-15. And therefore using these equations 14 and 15, we can write the Maxwell’s 

equations using this generalized current t

in
M  and t

in
J . What will be those forms of Maxwell’s 

equations? Very simple to write. 
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Just from our first set of equations, so let us put a vector here. So, this will be called equation, let 

us call this equation-16. So, this means that we have now expressed Maxwell’s equation in terms 

of the generalized current t

in
M  and t

in
J . We have completely expressed, we have completely 

forgotten that or completely compressed the idea t

in
M  contains the compressed term, composed 

of the displacement magnetic current and the impressed magnetic current.  



So, that is contained in t

in
M , similarly, t

in
J  is a term which contains the electric conduction 

current; the electric impressed current and the electric displacement current. So, now we armed 

with this knowledge, we going to find out the power in an electromagnetic wave. 
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We are going to energy and power. So, what constitutes power flow in electromagnetic wave? 

How do we formulate? How much power is carried by an electromagnetic wave? How do we 

define that from where the definition comes? The journey will start from a vector identity, which 

will lead to the conservation of power. And then we will use our knowledge of low frequency in 

order to isolate the different terms in that vector identity. And then we will distinguish the terms 

leading to stored energy, leading to power flow, and leading to radiated and leading to power 

loss, or the ohmic power loss. 

So, start with the vector identity which takes the shape of the conservation of power. And that 

vector identities. So, this is the vector identity: ( ) ( ) ( )
in in in in in in

E H H E E H      . So, 

this is an identity which is a general identity for any two vectors a and b . It is not restricted to 

electric and magnetic fields; we apply that identity to the vectors, electric field and magnetic 

field. 
in

E and
in

H , as before denote the instantaneous electric and instantaneous magnetic fields 

respectively. 



So, now from here if we call this equation-17; so we can write this as using the generalized 

current concept. In equation-16, -
in

H  dot t

in
M , minus 

in
E  dot t

in
J ; and then we bring all the terms 

to the left hand side. So we have brought all the terms to the left hand side; and this is a point 

relationship which is valid at a particular point. So, this differential relationship is valid at a 

particular point; we can construct an equivalent volume relationship. 

So, we can integrate in a region and establish or derive an equivalent relationship, which is valid 

in a region of space as before. So, we take the triple integral and then we apply divergence 

theorem to this term. And therefore, we get closed integral 
in

E cross 
in

H dot ds, plus triple 

integral
in

H ; the rest of the term remains the same.  

We call this equation, equation number-18, which is the point relationship; and we call this 

equation, equation number-19, which is valid in a region of space. This is the integral form in 

contrast to the point form there. So, we have two, we have two forms of relationship; and these 

two forms eventually will take the shape of the conservation of energy. That can be easily seen 

by plugging in these terms t

in
J , t

in
M  here. If I write down the equations of t

in
J ,

t

in
M , which we 

derived before; we will evaluate this and find out that each of these terms turn out to be different 

terms, which fit in together in the jigsaw puzzle. And in totality these two equations read as the 

conservation of power equations. In order to do that let us find out happens when we equate 

when we put in substitute the values. 
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So, 
in

E dot t

in
J ; we will just substitute t

in
J ; the displacement current, the conduction current and 

the impressed current that is using equation-14, this relationship. So, now I can write this as 

using the constitutive relationship, I can write this as epsilon
in

E . This I can write as 
in

E  and 

this I can write as i

in
J ; because d is epsilon

in
E , and

in
J  is

in
E . And then I can write this as; sorry, 

I should have put a vector here. So, epsilon
in

E  dot del del t of
in

E , plus sigma mod
in

E  square, 

plus
in

E  dot i

in
J .  



Now, the terms We as half epsilon 
in

E  dot 
in

E  this term; and Wm as half mu 
in

H  dot
in

H . These 

two terms, this term can be identified as the electric stored energy; the electric stored energy of 

static fields. So, electric and so this is the electric energy density; and this is the magnetic energy 

density. 
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So, now if we perform e
W

t




; it is a simple matter; we will get half epsilon 2
in

E , in
E

t




. That is 

epsilon 
in

E  dot in
E

t




; and similarly m
W

t




 will be mu 
in

H  times in
H

t




. So, they refer to the rate of 

change of stored electric for e
W

t




; and the rate of change of stored magnetic energy 

densities m
W

t




. The term Pd defined as sigma mod E in square is the density of power converted 

to heat energy. It is the density of power converted to heat energy or the ohmic loss term. 
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So, if we look at the term the other term
in

H dot t

in
M ; it is going to give me if I break up t

in
M  dot, 

plus i

in
M . So, next using B equal to mu 

in
H ; I can write this term as equal to plus i

in
M  simple 

matter. So, that is mu
in

H dot in
H

t




, plus i

in
M . So, let us call let us call this equation as 20; and let 

us call this equation as 21.  

So, now we have all the ingredients, how to write the original vector identity in terms of terms; 

or in terms of quantities, which relate to the stored energy density. The ohmic loss term and the 

impressed power and the power flow terms. So, we will interpret those terms and we will find 

that what the vector identity we originally wrote, is basically a manifestation or basically an 



expression of the conservation of energy. So, let us come to that in the next class. So, we stop 

here from now; we will continue here. Thank you. 


