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Welcome to module two on phasor estimation and we will continue with the least square 

technique. So in this lecture, our focus will be on how we can formulate the least square 

estimation technique and how this can be applied to phasor estimation perspective and in 

particular, the fundamental component which we like to estimate for the relay. So with this 

target we will go with this. 
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So let us first understand what least square estimation technique is before applying it to the 

relay applications. We consider a set of measurements that satisfies 

𝑎 + 𝑏𝑡 = 𝑚 

Where t stands for the time index and m for the measurements. Now a and b are the system 

parameters which happen to be not known to us, and these unknowns are to be estimated in 

this process. Such least square estimation technique you might have come across in the curve 

fitting techniques or as a tool in signal processing, we are addressing the same thing here. Now 

here in this case, we have a set of measurements and the corresponding different time are 

considered. Now let us say that we have n number of measurements for this purpose. 

𝑎 + 𝑏𝑡0 = 𝑚0 

𝑎 + 𝑏𝑡1 = 𝑚1 

                                                                        . 

𝑎 + 𝑏𝑡𝑛−1 = 𝑚𝑛−1 

 Therefore that m0, so we can say that mn-1 and the corresponding time where we took these 

measurements are the t0 to tn-1. So for this you can say that individual measurement and the 

associated time we can write the for the corresponding system. 

So we will have we can say that a set of n equations for this. So in this case, we can say that 

these corresponding measurements are associated the corresponding time, note that the time 

index we can say that the time index you can say that t0 through tn-1 are also known to us, and 

so we can say the corresponding measurements are also known to us through which we like to 

find the corresponding a and b values for the system as system parameters. These you can say 

that time intervals between the two consecutive measurement points generally remain to be 

fixed and that is what we will see in all relay applications. 
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Now considering that the a head and the b head as our estimated values, so in the same equation, 

we can fit you can say that for the system equation like this,  

𝑎̂ + 𝑏̂𝑡0 − 𝑚0 =∈1 

𝑎̂ + 𝑏̂𝑡1 − 𝑚1 =∈2 

                                                                        . 

𝑎̂ + 𝑏̂𝑡𝑛−1 − 𝑚𝑛−1 =∈𝑛−1 

Error represented by ɛ which will be there because the estimated value not exactly match with 

the 𝑎̂ and 𝑏̂ So that will be ɛ1 and like that you can say that for the other measurements also 

you can say that we write down ɛ2, ɛ3 like this. So if we have the set of measurements here m0 

through mn -1 or m1 through mn, t0 through tn -1 or t1 through tn,. The set of measurements we n 

measurements. So ɛ1 through ɛn-1, so this will be we can say that have n errors. So this inner 

errors or otherwise we call residues also, and m0 through mn -1 are the measurements. So we 

have the estimated value 𝑎̂ and 𝑏̂  for this particular system. Then we can write this 

corresponding equation in matrix form like this, 

[
 
 
 
 
1 𝑡0
1 𝑡1
. .
. .
1 𝑡𝑛−1]

 
 
 
 

[
𝑎̂
𝑏̂
] −

[
 
 
 
 

𝑚0

𝑚1

.

.
𝑚𝑛−1]

 
 
 
 

=

[
 
 
 
 

∈0

∈1

.

.
∈𝑛−1]

 
 
 
 

 



 

These are nothing but we can designate them as matrices as 

[𝐴][𝑋] − [𝑚] = [∈] 

So the [X] here is our unknown that is a and b are to be obtained and m are our measurements, 

m0 through mn-1 and then we can say that we can fit the corresponding equation also. In the 

other way, we can write down that as 

[∈] = [𝐴][𝑋] − [𝑚] 

These t’s are under the observation. So that is why these are known to us, the time index you 

can say that are considered to be known to us. So if we say that for these n sets of measurements 

n ×1, so we have n ×1 for the ɛ and for A you can say that if we see here, n × 2 and the X we 

can say that 2 × 1. So you can say the matrices are matched in this way. 
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Now we will try to formulate the least square estimation technique. So the ɛ, the error matrix 

that becomes equals to  

[∈] = [𝐴][𝑋] − [𝑚] 

If you multiply this [ɛ] with its transpose [ɛ]T that becomes 

  

[∈]𝑇[∈] = [𝐴𝑋 − 𝑚]𝑇[𝐴𝑋 − 𝑚] 



 

[∈]𝑇[∈] = [[𝐴𝑋]𝑇 − [𝑚]𝑇][𝐴𝑋 − 𝑚] 

                                                           = [𝐴𝑋]𝑇[𝐴𝑋] + [𝑚]𝑇[𝑚] − [𝐴𝑋]𝑇[𝑚] − [𝑚]𝑇[𝐴𝑋] 

Now we will see in this we can say that these terms. If we see, we can say that here the m is 

n×1, so therefore m transpose will be 1× n and the A is n×2, we have already seen earlier slide 

also and the X is you can say that 2×1, a and b are the two unknowns. So therefore, the AX 

gives us you can say that n ×1, n ×2 into 2×1 that is n×1 and the [m]T is nothing but 1×n. 

So therefore,  

[𝑚]𝑇[𝐴𝑋]: 1 × 1 

 We can write also because transpose you can say that of the one element matrix that becomes 

itself the element and the matrix. Therefore, for this 1×1 matrix 

[𝑚]𝑇[𝐴𝑋] = [𝑚𝑇𝐴𝑋]𝑇 = [𝐴𝑋]𝑇[𝑚] = [𝑋]𝑇[𝐴]𝑇[𝑚] 

And therefore, if you see, you can say that this equation, we can represent this equation 

[∈]𝑇[∈] = [𝑋]𝑇[𝐴]𝑇[𝐴𝑋] + [𝑚]𝑇[𝑚] − 2[𝑋]𝑇[𝐴]𝑇[𝑚] 
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Now leading to that borrowing that equation from the earlier slide we will differentiate this 

equation with respect to X, the unknown vector 

2[𝐴]𝑇[𝐴][𝑋] − 2[𝐴]𝑇[𝑚] = 0 

From this relation we get the least square of error that can be rewritten as 

[𝑋] = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] 

So this gives us that least or minimum error, we can say minimization problem. This is the 

solution to obtain the corresponding unknown parameters of the system, a and b as we have 

defined for the system 

𝑎 + 𝑏𝑡 = 𝑚 

 For m is set of measurement, a is that we know this 1 and t’s it contains and then a and b are 

the unknown. So in this case, A matrix is also known to us and so also the measurement you 

can say that matrix is also known to us. Therefore, the right hand things are available to us, so 

we can find out this X vector that contains a and b, the unknown parameters of the system. So 

this you can say that [𝐴𝑇𝐴]−1[𝐴]𝑇 is called the pseudo inverse or left pseudo inverse in the 

literature. So once we have this inverse part and then we multiply the measurement side, we 

can find the corresponding X perspective. Now see here that matrix A becomes a square matrix 

then the whole we can say the term becomes and simple [A]-1, agree? So that you can say that 

the simplicity but what do we say that we will see that the number of measurements becomes 

within our positions, so we can have n number of and sufficient measurements to find the 

corresponding correct value of X. So in most of the cases, you will find that this A matrix make 



no more you can say that a square. So that becomes rectangular where this pseudo inverse 

matrix having these three terms are being used to obtain the corresponding unknown we can 

say that X parameter, we can say that having these two parameter a and b. Now let us you can 

say that how this corresponding least square estimation process that we define X equals to 

pseudo inverse of A into m that how we can apply you can say that for this power system 

application, particularly in relaying perspective we will see now. 

Let us this signal V and that is nth sample becomes equals to 

𝑣𝑛 = 𝑉𝑠𝑖𝑛(𝜔𝑡𝑛 + 𝜃) 

This kind of signal we have already used in the DFT application also, where vn is this sample 

at tn instant and V, θ to be found out. These are the two unknowns, V and θ which will reveal 

the corresponding phasors. V is the peak value so 
𝑉

√2
 provides the RMS and θ is the 

corresponding angle of this we can say that phasor at you can say that at the reference instant 

t0 also. Now let us you can say that at one instant t=t0 that is our starting time for the 

measurement, so in such condition 

𝑣0 = 𝑉𝑠𝑖𝑛(𝜔𝑡0 + 𝜃) 

If we expand this we can say that relation. So we have you can say the two terms, 

𝑣0 = 𝑉𝑐𝑜𝑠𝜃 sinω𝑡0 + 𝑉𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜔𝑡0 

t0 is the time that is under our control on measurements, so we know it and the  𝑉𝑠𝑖𝑛𝜃, 𝑉𝑐𝑜𝑠𝜃 

are the two unknowns. So we define this 𝑉𝑐𝑜𝑠𝜃 and 𝑉𝑠𝑖𝑛𝜃 in terms of X1 and X2, the two 

unknowns, and the corresponding other two terms sinω𝑡0 and 𝑐𝑜𝑠𝜔𝑡0 are defined by 𝑎01 

and 𝑎02. So this becomes equals to 

𝑣0 = 𝑎01 𝑋1 + 𝑎02𝑋2 

Now for the corresponding measurement v0, where v0 is our measurement, the voltage sample 

at t0. So we define 

𝑎01 = sinω𝑡0;  𝑎02 = cosω𝑡0 ; 𝑋1 = 𝑉𝑐𝑜𝑠𝜃 ;  𝑋2 = 𝑉𝑠𝑖𝑛𝜃    

We relate you can say that the capital A in the least square formulation. Now similarly at next 

instant after the time ∆t, t = t1 we got another sample v1 and that you can represent as 



𝑣1 = 𝑉𝑠𝑖𝑛(𝜔𝑡1 + 𝜃) 

And then that becomes if we expand the like above, we can say that this becomes  

𝑣1 = 𝑉𝑐𝑜𝑠𝜃 sinω𝑡1 + 𝑉𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜔𝑡1 

Two terms where the𝑉𝑐𝑜𝑠𝜃, 𝑉𝑠𝑖𝑛𝜃   term again comes simultaneously sinω𝑡0 and 𝑐𝑜𝑠𝜔𝑡0 are 

defined by 𝑎11 and 𝑎12. Therefore, this becomes equals to 

𝑣1 = 𝑎11 𝑋1 + 𝑎12𝑋2 

And the corresponding  

𝑎11 = sinω𝑡1;  𝑎12 = cosω𝑡1 ; 𝑋1 = 𝑉𝑐𝑜𝑠𝜃 ;  𝑋2 = 𝑉𝑠𝑖𝑛𝜃    
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Similarly, we can say that we can have n number of samples from v0 to vn -1 for the considered 

measurements and we can relate the corresponding equations as 

𝑎01 𝑋1 + 𝑎02𝑋2 = 𝑣0 

𝑎11 𝑋1 + 𝑎12𝑋2 = 𝑣1 

                                                                          . 

                                                                      

𝑎(𝑛−1)1 𝑋1 + 𝑎(𝑛−1)2𝑋2 = 𝑣𝑛−1 



So this is the set of equations for a set of measurements we can write as we formulated for this 

least square sense also. Now here for the particular sinusoidal signal of the voltage we can 

write,  

𝑎01 = sinω𝑡0;  𝑎02 = cosω𝑡0 

𝑎11 = sinω𝑡1;  𝑎12 = cosω𝑡1 

. 

𝑎(𝑛−1)1 = sinω𝑡(𝑛−1);  𝑎(𝑛−2)2 = cosω𝑡(𝑛−1) 

And like that we can say that these coefficients for the unknowns X1 and X2 are like this, where 

we will now formulate the matrix A as 

𝐴 =

[
 
 
 
 

𝑎01 𝑎02

𝑎11 𝑎12

. .

. .
𝑎(𝑛−1)1 𝑎(𝑛−1)2]

 
 
 
 

 

Note that these a’s are nothing but in terms of the time index and the corresponding frequency, 

omega the fundamental frequency.  Therefore, we can say that in the t0 t1 and t index in this 

index in the time index being known to us, so A matrix is assumed to be known to us. X is the 

unknown,  

𝑋 = [
𝑋1

𝑋2
] 

X1, X2 have already defined in terms of 𝑉𝑐𝑜𝑠𝜃 and 𝑉𝑠𝑖𝑛𝜃 term and the corresponding m are 

the set of measurements,  

𝑚 =

[
 
 
 
 

𝑣0

𝑣2

.

.
𝑣𝑛−1]

 
 
 
 

 

So we have n number of measurements for this purpose. 
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Now then we can say that we apply the corresponding least square technique which we have 

learnt.  

𝑋 = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] 

 Here we have considered X1 = Vcosθ, X2= Vsinθ. Therefore, we can say that the X can be 

obtained from this pseudo inverse of A and m is nothing but v0 through vn-1. So the V can be 

computed from this X1 and X2 and that becomes 

𝑉 = √𝑋1
2 + 𝑋2

2 



So this gives us the peak and then you do we can say, you can find the RMS value from this 

peak and θ you can say that 

𝜃 = tan−1(
𝑋2

𝑋1
) 

 From that X2, X1 we can find out the corresponding θ value. Therefore, from there we can say 

that we can find out these phasors to be 𝑉𝑟𝑚𝑠∠𝜃 for the corresponding sinusoidal signal. So this 

is what you can say that how we can model the corresponding sinusoidal signal for the power 

system relaying applications with the least square estimation sense. Now in these formulations 

we saw that there are two unknowns, X1 and X2, so we need at least two measurements, two 

samples of v1 and v2 to obtain the phasors, obvious or if more measurements are available then 

also we can peek into the corresponding least square sense. Say if you have there are more 

measurements like one cycle of data for the 50 Hz system with same you can say that 400 Hz 

sampling, where number of measurements that m will have eight number against that samples. 

Then size of X becomes 2 ×1, size of A becomes 8 ×2 and then the size of m becomes 8 ×1.  

We have eight samples for the one cycle, so eight measurements are available. Then the AX 

you can say that because AX equals to m that becomes valid as you test. Now let us you can 

see that we will go to some examples how we can compute the corresponding phasors using 

the least square estimation technique. So as usual you can say that in our earlier discussion also 

on phasor estimation using DFT, Cosine filter and so we consider a signal  

𝑣𝑡 = 109.53sin (100𝜋𝑡 + 22.50)(V) 

Samples are taken at 0.4 kHz and so therefore, the ∆t becomes equals to 0.0025 s. We got the 

corresponding voltage samples which we have already seen and this is the corresponding time 

index for this one with an interval of ∆t of 0.0025 second. So this leads to you can say that 

datasets available now and how we will apply the dataset for the phasor estimation technique 

that we will learn. 
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Now as already pointed out, we have two unknowns in this case, Vcosθ and Vsinθ which are 

already formulated. So for simplicity minimum two samples are required. These two samples 

corresponds to time index t0 and t1. So that corresponds to 41.47 at 0.1s and the next sample 

101.01 is at 0.1025 s are the values of v0 and v1. Hence the measurement matrix m and the 

unknown matrix X can be represented as 

[𝑚] = [
41.47
101.01

]    [𝑋] = [
𝑉𝑐𝑜𝑠𝜃
𝑉𝑠𝑖𝑛𝜃

] 

In addition, considering 𝜔 = 2𝜋𝑓 = 2𝜋(50) = 100𝜋 corresponding A matrix for the 

respective time interval t0 and t1 can be written as  

𝐴 = [
𝑠𝑖𝑛𝜔𝑡0 𝑐𝑜𝑠𝜔𝑡0
𝑠𝑖𝑛𝜔𝑡1 𝑐𝑜𝑠𝜔𝑡1

] = [

0 1
1

√2

1

√2

] 

Now as per the least square estimation algorithm the unknown vector X can be represented as, 

𝑋 = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] 

 

 

 

. 
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In continuation of that 

[𝐴]𝑇[𝐴] =

[
 
 
 0

1

√2

1
1

√2]
 
 
 

[

0 1
1

√2

1

√2

] = [
0.5 0.5
0.5 1.5

] 

Then you can say that  

[𝐴𝑇𝐴]−1 = [
3 −1

−1  1
] 

This pseudo inverse becomes  

[𝐴𝑇𝐴]−1[𝐴]𝑇 = [
3 −1

−1  1
]

[
 
 
 0

1

√2

1
1

√2]
 
 
 

= [
−1 1.4142
1 0

] 

Note that because this is like a square matrix so this pseudo inverse is nothing but the inverse 

of A also. So we will get you can say that if we try, this inverse of A matrix becomes also same 

to this pseudo inverse agreed.  This is to making a practice how to have the pseudo inverse 

computation. Now the unknown variable matrix X becomes 

𝑋 = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] = [
−1 1.4142
1 0

] [
41.47
101.01

] = [
101.37
41.47

] 

 So here, the first element X1=101.37 and the second element X2 = 41.47. 
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Then as per the already we have formulated the peak value of V becomes 

𝑉 = √𝑋1
2 + 𝑋2

2 = 109.53 (V) 

 The corresponding RMS value becomes 

𝑉𝑟𝑚𝑠 =
109.53

√2
= 77.45 (V) 

The angle theta is  

𝜃 = tan−1 (
𝑋1

𝑋2
) = 22.250 

Therefore, the estimated phasor becomes 77.45∠22.250.  If you remember in DFT we got the 

same thing, also here in this example we are talking about that peak value divided by root 2 we 

are getting correct value for this part. This shows that the corresponding phasors being 

estimated by the least square estimation using the two samples become also pretty good. 
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Now we will see how by shifting the window the corresponding algorithm works. For that we 

will leave this one and we have a fresh sample in replace. Now these are the corresponding two 

samples that constitute the window now. So in this window again, for simplistic for the least 

square perspective. We consider that this as t0 and this as t1, and t0 again you can say that we 

are talking about 0 second and t1 again 0.0025. This reduces the computation burden for this 

system also that is the advantage you can expect.  Now the m matrix is given by 

[𝑚] = [
101.01
101.37

] 

 The corresponding X again remains to be same given by 



[𝑋] = [
𝑉𝑐𝑜𝑠𝜃
𝑉𝑠𝑖𝑛𝜃

] 

 Corresponding A matrix now becomes equals to 

𝐴 = [
𝑠𝑖𝑛𝜔𝑡0 𝑐𝑜𝑠𝜔𝑡0
𝑠𝑖𝑛𝜔𝑡1 𝑐𝑜𝑠𝜔𝑡1

] = [

0 1
1

√2

1

√2

] 

Same as what we see in the earlier example also. So what we are doing here also that is 

advantageous that the A matrix we are not changing that will lead to us  to take a benefit of not 

computing the A matrix repeatedly. Not only A matrix, if the A matrix remains to be same in 

this process, even if we shift the corresponding window of the measurement then the 

corresponding pseudo inverse computation this become also fixed one. So the advantage you 

can say by doing we can say this approach is that A matrix can be computed a priory and then 

that so also the elapsed pseudo inverse can be also computed a priori and you fix it and then 

you only apply the corresponding m measurements whatever you do we have right now and 

then with that measurement if you apply that you can say that, you multiply this fixed matrix 

here then you can get the corresponding unknown vector X. Now this second window we will 

see you can see how the corresponding X can be obtained. So similarly, you can say that we 

got the corresponding A transpose is same you can say what you see here and the A matrix you 

can say that this pseudo inverse matrix becomes this which happens to be A inverse also and 

then you can say that it go, multiply the corresponding pseudo inverse matrix to this m and 

then we get the X.  So the X becomes  

𝑋 = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] = [
42.36
101.01

] 

Then you can say that from this X1 and X2 we got the V to be 109.53 and the RMS value is 

77.45, same what we got earlier also. And then the 

𝜃 = tan−1 (
𝑋1

𝑋2
) = 67.250 

 The phasors become𝑠 77.45∠67.250. So what we see here that there are two windows we 

have observed now. In first window, we got the phasor to be 77.45∠22.250. In the second 

window, we go the phasors to be 77.45, same magnitude with angle 67.250, a shift in angle of 

positive value of 450. Same thing we observe in the discrete Fourier transform also the, with 

the shift in you can say that the window with more and more observations. 



The window is being shifted you can say that with the window progresses you can say that 

forward and then you can say that. Now what we say here that because this is you can say that 

the corresponding sampling rate is 4 kHz and then you can say we have 50 Hz signal, so the 

number of N becomes equals to 8 and then we are getting the corresponding 450 shifting by 

this one which is correct, that we have discussed in the DFT you can say that, DFT based phasor 

estimation. 
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Now let us you can say that there is a chance that the signal may not be exactly fundamental 

and that this may be contaminated by different harmonics component, we call it noises because 

we are not, we are modeling in the least square sense only for the fundamental part. So we are 

not modeling any harmonics and so we can consider them as noise. So this is a signal which 

we have earlier also discussed you can say that with the fundamental we added you can say 

that now the different components to the second harmonic, the corresponding other harmonics 

component, third and fifth and so. So by considering the corresponding signal becomes 

distorted like this, no more pure fundamental and then you can say that the corresponding signal 

available, samples available are like this.  With the same you can say sampling rate and this 

and with one cycle becomes n equals to 8. Now we will see how these at this situations, how 

the least square estimation technique will be good at. 
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So again two samples, first two samples, distorted signal, again t0 and t1. So we progress like 

this m and X. So m becomes this,  

[𝑚] = [
53.92
102.33

] 

Only m is changing, X becomes 

[𝑋] = [
𝑉𝑐𝑜𝑠𝜃
𝑉𝑠𝑖𝑛𝜃

] 

Matrix A becomes same what we have considered earlier also 



= [
𝑠𝑖𝑛𝜔𝑡0 𝑐𝑜𝑠𝜔𝑡0
𝑠𝑖𝑛𝜔𝑡1 𝑐𝑜𝑠𝜔𝑡1

] = [

0 1
1

√2

1

√2

] 

Then we apply this one and we calculate the corresponding X  and when we use the X, we get 

the corresponding V to be 105.6 and the rms value becomes now different one, 74.67 and the 

angle theta not twenty two point something, it is now 30.70. Therefore, you see that the 

estimated phasor becomes for the same fundamental component for the first example also. Now 

the current phasor you can say we got earlier was 77.4∠22.250. Now we are getting you can 

say that phasor estimated by this process to be different. It means that only using two samples 

by the least square method we are not able to get the correct phasors as expected. So then what 

to do? 
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Now we will see what you can do also, we can have more measurements that is the flexibility 

in this least square approach. So let us you can say that time for simplicity you can take more 

than two, three, four, five, six, seven and then do. Let us say you can say that we are taking one 

cycle here like we did it for one DFT. So t0 through we can say that t7, we have eight samples 

here, one cycle. And these are we consider corresponding measurements, you can say that these 

eight measurements will be considered here. So our measurement m here you can see that are 

these eight measurements here. So X you can say that again happens to be same two unknowns, 

a and b and ω you can say as usual. t0 we can say that we start from zero to t, you can say at 

0175 that is the eighth sample we are talking about and for the A matrix we defined as you can 

say that having earlier because now we can say that eight points measurement, sinωt0, cosωt0 



and like this you can say that sinωt7 to  cosωt7. So by substituting the time index from t0 =0s to  

t7 = 0.175s and ω=100. Then we got the A matrix to be  

𝐴 =

[
 
 
 
 
 
 
 
𝑠𝑖𝑛𝜔𝑡0 𝑐𝑜𝑠𝜔𝑡0
𝑠𝑖𝑛𝜔𝑡1 𝑐𝑜𝑠𝜔𝑡1
𝑠𝑖𝑛𝜔𝑡2 𝑐𝑜𝑠𝜔𝑡2
𝑠𝑖𝑛𝜔𝑡3 𝑐𝑜𝑠𝜔𝑡3
𝑠𝑖𝑛𝜔𝑡4 𝑐𝑜𝑠𝜔𝑡4
𝑠𝑖𝑛𝜔𝑡5 𝑐𝑜𝑠𝜔𝑡5
𝑠𝑖𝑛𝜔𝑡6 𝑐𝑜𝑠𝜔𝑡6
𝑠𝑖𝑛𝜔𝑡7 𝑐𝑜𝑠𝜔𝑡7]

 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 

0 1
1

√2

1

√2
1 0
1

√2
−

1

√2
0 −1

−
1

√2
−

1

√2
−1 0
1

√2
−

1

√2]
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Now, if we apply this corresponding thing to that eight measurements for this estimation of the 

phasors then we get the corresponding A, the pseudo inverse matrix to be like 

[𝐴𝑇𝐴]−1[𝐴]𝑇 = [
0 0.1768 0.25 0.1768 0 −0.1768 −0.25 −0.1768

0.25 0.1768 0 −0.1768 −0.25 −0.1768 0 0.1768
] 

 And the X matrix is written as 

[𝑋] = [𝐴𝑇𝐴]−1[𝐴]𝑇[𝑚] = [
101.37
41.47

] 

Then the corresponding V to be like  



𝑉 = √𝑋1
2 + 𝑋2

2 = 109.53(V) ; 𝑉𝑟𝑚𝑠 = 77.45 (V) 

This is the correct one and  

𝜃 = tan−1 (
𝑋2

𝑋1
) = 22.250 

The estimated phasor is 77.4∠22.250 for this first window. So that is the correct phasors we 

are getting. So what we did here, that instead of two samples we took more samples which can 

be easily accommodated in the formulation and by that we can say that the corresponding eight 

measurements which we took from window. Thus by increasing the window size we are getting 

the correct phasor estimation even though the corresponding signal is being contaminated by 

the different harmonics. That is the beauty of the least square estimation technique what we 

see from this example. Now we will go something more beyond this. 
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In many applications, what happens that the relay may require second harmonic component, 

third harmonic component, fifth harmonic component like this, like in one example in inrush 

current detection in transformer for that we require second harmonic component estimation, so 

different harmonic components may be required to be estimated correctly. Now in the DFT 

approach and other approaches now in the least square sense also what we have formulated till 

now only our target was to how to get the corresponding phasor value, fundamental component, 

we do not bother about other you can say harmonic components. They were being completely 

rejected in DFT one cycle and so. So if we did the corresponding particular harmonic 



component to be estimated properly for utility in the relaying perspective and so then what to 

do?  

Now see here you can say that how we can do in the formulation in the least square perspective. 

So what we say that we need again second harmonic components to be estimated here. Let us 

say in addition to the fundamental, so we will formulate the corresponding signals v and 

whatever we can say the fault signal will be received by the relay in terms of two components, 

fundamental and the second harmonic component. 

𝑣𝑛 = 𝑉1 sin(𝜔𝑡𝑛 + 𝜃1) + 𝑉2sin (2𝜔𝑡𝑛 + 𝜃2) 

So, 𝑉1 , θ1 and 𝑉2 and θ2 are the four unknowns for the corresponding fundamental and the 

second harmonic component. So we will expand the corresponding signal model to be like this 

as we have done, 

𝑣𝑛 = 𝑉1 sin𝜔𝑡𝑛𝑐𝑜𝑠𝜃1 + 𝑉1 cos𝜔𝑡𝑛𝑠𝑖𝑛𝜃1 + 𝑉2 sin 2𝜔𝑡𝑛𝑐𝑜𝑠𝜃2 + 𝑉2 cos 2𝜔𝑡𝑛𝑐𝑜𝑠𝜃2 

This for the fundamental component first two terms and the second harmonic component, two 

terms for the second harmonic component. Then the A matrix becomes for this case become  

𝐴 =

[
 
 
 
 
𝑠𝑖𝑛𝜔𝑡0 𝑐𝑜𝑠𝜔𝑡0 𝑠𝑖𝑛2𝜔𝑡0 𝑐𝑜𝑠2𝜔𝑡0
𝑠𝑖𝑛𝜔𝑡1 𝑐𝑜𝑠𝜔𝑡1 𝑠𝑖𝑛2𝜔𝑡0 𝑐𝑜𝑠2𝜔𝑡1

. . . .

. . . .
𝑠𝑖𝑛𝜔𝑡𝑛 𝑐𝑜𝑠𝜔𝑡𝑛 𝑠𝑖𝑛2𝜔𝑡𝑛 𝑐𝑜𝑠2𝜔𝑡𝑛]

 
 
 
 

 

So therefore, the corresponding unknowns becomes four. So therefore, this becomes the 

corresponding four cross something will be coming from the A matrix. So these results you 

can say that in terms of that you have n number of measurements you can say that, then you 

can put the corresponding matrix to be n times of this. So the X becomes  

[𝑋] = [

𝑉1𝑐𝑜𝑠𝜃1

𝑉1𝑠𝑖𝑛𝜃1

𝑉2𝑐𝑜𝑠𝜃2

𝑉2𝑠𝑖𝑛𝜃2

] 

So we have four unknowns, X1, X2, X3, X4 and we have n measurements 



𝑚 =

[
 
 
 
 
𝑣0

𝑣1

.

.
𝑣𝑛]

 
 
 
 

 

 Now this leads to we can say that same you can say that we will apply the corresponding least 

square sense and then we will find out we can say that fundamental  

𝑉1 = √𝑋1
2 + 𝑋2

2 ; 𝜃1 = tan−1 (
𝑋2

𝑋1
) 

And for the second harmonic case 

𝑉2 = √𝑋3
2 + 𝑋4

2 ; 𝜃2 = tan−1 (
𝑋4

𝑋3
) 

The RMS value you can say that can be obtained by from  

𝑉1𝑟𝑚𝑠 =
𝑉1

√2
 ;  𝑉2𝑟𝑚𝑠 =

𝑉2

√2
 

So this is what you can say that we say that if we like to get the corresponding second harmonic 

components then we have to formulate in the least square algorithm and then you can say that 

we can use the pseudo inverse perspective where the corresponding A matrix is being changed 

and so also the X matrix and then you can say that we can get this second harmonic component 

fundamental. We can include like this, you can say there are other harmonic components in the 

system also.  Now note that you can say that we can accommodate more and more harmonics 

but that leads to more computation process because the A matrix size will also increase and 

more unknowns, more number of measurements also require for better estimation.  Now also, 

if you have included more number of components in the process, then your modeling becomes 

more accurate and the estimation becomes better with more and more computational model. 

That leads to situation in terms of all these things, if you only require the corresponding 

fundamental part here V1 for this part, you do not consider this required somewhere here even 

though you have modeled the systems, then we see that these matrices, these lines 

corresponding to first two part, this part you can say that this is nothing but corresponds to the 

fundamental part and then this block consider the difference for the second harmonic 

component. Therefore, you can say that in the A matrix also and in the corresponding pseudo 

inverse matrix those you can say the portions are being required for the computation 



perspective. So you can optimize your computation in accordance with the requirement for the 

relay application. 
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So what do we see? We can say that in overall that the least square estimation technique also 

provides accurate phasor estimations like in discrete Fourier transforms. If the signal is pure 

like the steady state or so, we can say that we can manage with the less sample also, but if 

signal having impurity, you can say that like in different situation we can have more and more 

sample accommodating systems.  We can incorporate harmonic components in the estimation 

process also and you can say that to reduce the computation burden of A we can say fixed for 

that particular window size, also, we can say that this pseudo inverse is being fixed. Therefore, 

you can say that there is no need always to compute the corresponding inverse matrix so that 

reduces the computation burden in the process. In overall, we say that least square is another 

attractive technique for the phasor estimation perspective. In the subsequent lecture, we will 

see that how this technique can be used in different other applications also. Thank you. 


