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CONCEPTS COVERED

Lecture 08 Least Square Technique

Phasor estimation techniques

+ Least Square Estimation technique

+ Application to Phasor estimation

Welcome to module two on phasor estimation and we will continue with the least square
technique. So in this lecture, our focus will be on how we can formulate the least square
estimation technique and how this can be applied to phasor estimation perspective and in
particular, the fundamental component which we like to estimate for the relay. So with this

target we will go with this.
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Least Square Estimation

Consider a set of measurements that satisfies
a+bt=m

Where, mis the measurement set, 't' the associated time index

aand b are unknown system parameters to be obtained

For ‘a set of " number of measurements, taken at a regular interval
a+ bty =my
a+bty=m

a+bty g =myy
where mg, m, ....m,,_, are the measurements and ¢y, ¢, ....t,_, are corresponding time index



So let us first understand what least square estimation technique is before applying it to the

relay applications. We consider a set of measurements that satisfies
a+bt=m

Where t stands for the time index and m for the measurements. Now a and b are the system
parameters which happen to be not known to us, and these unknowns are to be estimated in
this process. Such least square estimation technique you might have come across in the curve
fitting techniques or as a tool in signal processing, we are addressing the same thing here. Now
here in this case, we have a set of measurements and the corresponding different time are

considered. Now let us say that we have n number of measurements for this purpose.
a+ bto = mo

a+bt1=m1

a-+ btn—l = mn_l

Therefore that mo, so we can say that mn.1 and the corresponding time where we took these
measurements are the to to tr.1. So for this you can say that individual measurement and the

associated time we can write the for the corresponding system.

So we will have we can say that a set of n equations for this. So in this case, we can say that
these corresponding measurements are associated the corresponding time, note that the time
index we can say that the time index you can say that to through t,.1 are also known to us, and
S0 we can say the corresponding measurements are also known to us through which we like to
find the corresponding a and b values for the system as system parameters. These you can say
that time intervals between the two consecutive measurement points generally remain to be

fixed and that is what we will see in all relay applications.
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Least Square Estimation

If & and b are the estimated values

a+bty—my=¢ &

{(]' Mmy €o l

3 St a m
a+bt,-m =e¢ = 1% AE
) 1 tn-1} lmn—lJ En-14

K- [m = [

unknown  measurement

a*'Btn—l_mn—l = €n-1 Al

Where, €, €; ...€,_, are the errors (residues)

formg, my ....m,,., are the measurements.

[€]= [AJIX] = [m]

nx2 2xg  nxi

Now considering that the a head and the b head as our estimated values, so in the same equation,

we can fit you can say that for the system equation like this,

~

d+bt0 _mo =El

d+5t1 _m1 =Ez

~

a+bty g —my_g =654

Error represented by e which will be there because the estimated value not exactly match with
the @ and b So that will be €1 and like that you can say that for the other measurements also
you can say that we write down 2, €3 like this. So if we have the set of measurements here mo
through my 1 or my through mn, to through t, .1 or t1 through t,,. The set of measurements we n
measurements. So &1 through en.1, so this will be we can say that have n errors. So this inner
errors or otherwise we call residues also, and mg through m,, .1 are the measurements. So we

have the estimated value @ and b for this particular system. Then we can write this

corresponding equation in matrix form like this,
1 ¢t mg €o
t m
SRR
|z =

1 tn—l My—1 En—l



These are nothing but we can designate them as matrices as

So the [X] here is our unknown that is a and b are to be obtained and m are our measurements,
mo through mn.1 and then we can say that we can fit the corresponding equation also. In the

other way, we can write down that as

These t’s are under the observation. So that is why these are known to us, the time index you
can say that are considered to be known to us. So if we say that for these n sets of measurements
n x1, so we have n x1 for the € and for A you can say that if we see here, n x 2 and the X we

can say that 2 x 1. So you can say the matrices are matched in this way.
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Least Square Estimation
[e]= [A][X] - [m]
(e]"[e] = [AX —m]" [AX ~m]

= [[AX]" - [m]"] [AX —m]

= [AX]"[AX] + [m]" [m] - [AX]" [m] — [m]" [AX]
Here
[m:nx1 = [m]":1xn For the 1 x 1 matrix,
CLECIIR [ AN = AT
X:2x1 = [AX]"[m]
= (X]"[A)"[m]

[€]"[€] = XTAT[AX] + [m"][m] - 2[X]"[A]" [m]

Now we will try to formulate the least square estimation technique. So the ¢, the error matrix

that becomes equals to

If you multiply this [¢] with its transpose [¢]" that becomes

[€]"[€] = [AX — m]"[AX —m]



[€]"[€] = [[AX]" — [m]"][AX — m]
= [AX]"[AX] + [m]"[m] — [AX]"[m] — [m]"[AX]

Now we will see in this we can say that these terms. If we see, we can say that here the m is
nx1, so therefore m transpose will be 1x n and the A is nx2, we have already seen earlier slide
also and the X is you can say that 2x1, a and b are the two unknowns. So therefore, the AX

gives us you can say that n x1, n x2 into 2x1 that is nx1 and the [m]" is nothing but 1xn.
So therefore,
[m]T[AX]: 1 x 1

We can write also because transpose you can say that of the one element matrix that becomes

itself the element and the matrix. Therefore, for this 1x1 matrix
[m]"[AX] = [m"AX]" = [AX]"[m] = [X]"[A]" [m]
And therefore, if you see, you can say that this equation, we can represent this equation

[€]"[€] = [X]T[AT"[AX] + [m]" [m] — 2[X]"[A]" [m]
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Least Square Estimation

(e [¢] = [XI"[AI"[AX] + [m"Jfm] = 21X]"[4)"[m]
Differentiating the above equation wt. [X]
2(ATT[A]X] - 2[A]"[m] = 0
(A" [A1[X] = [A]"[m]
(X] = "4

unknown
for the systema + bt =m

when[4] is a square matrix, the pseudo inverse becomes invese of [A]



Least Square Estimation for Phasor estimation

v, = Vsin(wt, +0)

where v, voltage sample at ¢, , V6 are to be found out

att=ty, v,=Vsin(wt,+6)
=Vsinwt,cos 6 +V sinf coswt, Where,
X, =Vcosh, X,=Vsing
5in wt +(V sin 6)cos wty
=8l g, = cos(wt
5Tk, gy = sin(wty), ap, (wty)

two unknowns?
at=t, y =Vsin(ot, +6)

=V sinwt, cos 6 +V sin 6 cos wt,

sin wt, cos oty

= ayy Xy +apky with ay, = sin(wt,), a1z = cos(wty)

Now leading to that borrowing that equation from the earlier slide we will differentiate this

equation with respect to X, the unknown vector
2[A]T[A]IX] — 2[A]"[m] = O
From this relation we get the least square of error that can be rewritten as
[X] = [ATA]'[A]" [m]

So this gives us that least or minimum error, we can say minimization problem. This is the
solution to obtain the corresponding unknown parameters of the system, a and b as we have
defined for the system

a+bt=m

For m is set of measurement, a is that we know this 1 and t’s it contains and then a and b are
the unknown. So in this case, A matrix is also known to us and so also the measurement you
can say that matrix is also known to us. Therefore, the right hand things are available to us, so
we can find out this X vector that contains a and b, the unknown parameters of the system. So
this you can say that [ATA]~1[A]7 is called the pseudo inverse or left pseudo inverse in the
literature. So once we have this inverse part and then we multiply the measurement side, we
can find the corresponding X perspective. Now see here that matrix A becomes a square matrix
then the whole we can say the term becomes and simple [A]?, agree? So that you can say that
the simplicity but what do we say that we will see that the number of measurements becomes
within our positions, so we can have n number of and sufficient measurements to find the

corresponding correct value of X. So in most of the cases, you will find that this A matrix make



no more you can say that a square. So that becomes rectangular where this pseudo inverse
matrix having these three terms are being used to obtain the corresponding unknown we can
say that X parameter, we can say that having these two parameter a and b. Now let us you can
say that how this corresponding least square estimation process that we define X equals to
pseudo inverse of A into m that how we can apply you can say that for this power system

application, particularly in relaying perspective we will see now.
Let us this signal V and that is n' sample becomes equals to
v, = Vsin(wt, + 6)

This kind of signal we have already used in the DFT application also, where vy is this sample

at tn instant and V, 6 to be found out. These are the two unknowns, V and 6 which will reveal

\/% provides the RMS and 6 is the

corresponding angle of this we can say that phasor at you can say that at the reference instant

the corresponding phasors. V is the peak value so

to also. Now let us you can say that at one instant t=to that is our starting time for the

measurement, so in such condition
vy = Vsin(wty + 0)
If we expand this we can say that relation. So we have you can say the two terms,
vy = VcosO sinwty + Vsinfcoswt,

to is the time that is under our control on measurements, so we know it and the Vsin8, Vcos@
are the two unknowns. So we define this Vcos@ and Vsin® in terms of X;1 and Xz, the two
unknowns, and the corresponding other two terms sinwt, and coswt, are defined by ag;

and a,,. So this becomes equals to
Vo = Qo1 X1 + Ap2X>

Now for the corresponding measurement vo, where vo is our measurement, the voltage sample

at to. So we define
ap1 = sinwty; ag, = coswty ; X4 = VcosO ; X, = Vsind

We relate you can say that the capital A in the least square formulation. Now similarly at next
instant after the time At, t = t; we got another sample v and that you can represent as



v; = Vsin(wt, + 0)
And then that becomes if we expand the like above, we can say that this becomes
v, = VcosO sinwt, + Vsinfcoswty

Two terms where theVcos8, Vsin€ term again comes simultaneously sinwt, and coswt, are

defined by a,, and a,,. Therefore, this becomes equals to
v; = aqp X1 +ag2X;

And the corresponding

a,1 = sinwt;; a, = coswt; ; X; =Vcosh ; X, = Vsinf
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Least Square Estimation for Phasor

91X +ag,X; =1, where gy = sin(wt,) agz = cos(wty)
ay Xy +apX, =1 ayy = sin(wt;) a;; = cos(wt;)
An-11X1 + An-1)242 = Vpy Ap-1y1 = SIN(@(p-1))  Qp-1)2 = cos(wt(p-1))

where

[A] =

An-11  An-1)2 = N megsurements

Similarly, we can say that we can have n number of samples from vo to vy -1 for the considered

measurements and we can relate the corresponding equations as
ap1 X1 + ag2Xz = vy

a;1 X1 +aX, =1

An-1)1 X1 + A(n-1)2X2 = Vp—1



So this is the set of equations for a set of measurements we can write as we formulated for this
least square sense also. Now here for the particular sinusoidal signal of the voltage we can

write,
g1 = Sinwty; ag, = coswt,

a,1 = sinwty; a1, = coswty

Amn-11 = sinwt(n_l); An-2)2 = COS(l)t(n_l)

And like that we can say that these coefficients for the unknowns X1 and Xz are like this, where

we will now formulate the matrix A as

[ Qo1 ap2 1

| aiq ap» |
A= . .

[ . I

la(n—l)l a(n—l)ZJ

Note that these a’s are nothing but in terms of the time index and the corresponding frequency,
omega the fundamental frequency. Therefore, we can say that in the to t; and t index in this
index in the time index being known to us, so A matrix is assumed to be known to us. X is the

unknown,

_[%
X = Xz]

X1, X2 have already defined in terms of VVcosf and Vsin6 term and the corresponding m are

the set of measurements,

Up-1

So we have n number of measurements for this purpose.
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Least Square Estimation for Phasor

(X] = [ATAI'[A]" [m]

X, =Vcosb X, =Vsinb

X
V= fx;l +X  O=ta (x—z)
1

v
Vims = =
ms V’i

Number of unknowns = 2, we need at least 2 samples to obtain the phasor

or more can be included.

Say, with 1 cycle data in the window, for 50 Hz and sampling rate 0.4 kHz, m=8
Sizeof X =2x1
Size of A=8x2 (10X = m]

Sizeofm=8x1

Least Square Estimation for Phasor

Example1
V(¢) = 109.53sin(100mt + 22.25°)(V) , samples are taken at a rate of 0.4 kHz, At =0.0025s

Time(s) va(V)

0.1 41.47
0.1025 101.01
0.105 101.37
0.1075 42.36
0.11 -41.47
0.1125 -101.01
0.1150 -101.37
0.1175 -42.36
0.12 4147
0.1225 101.01

Now then we can say that we apply the corresponding least square technique which we have

learnt.
X =[ATA] Al [m]

Here we have considered X1 = Vcos0, X>= Vsin0. Therefore, we can say that the X can be
obtained from this pseudo inverse of A and m is nothing but vo through vs.1. So the V can be

computed from this X1 and Xz and that becomes

V= /X12+X22



So this gives us the peak and then you do we can say, you can find the RMS value from this

peak and 6 you can say that
X,
— -1
6 = tan™ " ( X1)

From that X, X1 we can find out the corresponding 6 value. Therefore, from there we can say
that we can find out these phasors to be V;.,,,;£6 for the corresponding sinusoidal signal. So this
IS what you can say that how we can model the corresponding sinusoidal signal for the power
system relaying applications with the least square estimation sense. Now in these formulations
we saw that there are two unknowns, X1 and Xz, so we need at least two measurements, two
samples of v1 and v> to obtain the phasors, obvious or if more measurements are available then
also we can peek into the corresponding least square sense. Say if you have there are more
measurements like one cycle of data for the 50 Hz system with same you can say that 400 Hz
sampling, where number of measurements that m will have eight number against that samples.

Then size of X becomes 2 x1, size of A becomes 8 x2 and then the size of m becomes 8 x1.

We have eight samples for the one cycle, so eight measurements are available. Then the AX
you can say that because AX equals to m that becomes valid as you test. Now let us you can
see that we will go to some examples how we can compute the corresponding phasors using
the least square estimation technique. So as usual you can say that in our earlier discussion also

on phasor estimation using DFT, Cosine filter and so we consider a signal
v, = 109.53sin (1007t + 22.5%)(V)

Samples are taken at 0.4 kHz and so therefore, the At becomes equals to 0.0025 s. We got the
corresponding voltage samples which we have already seen and this is the corresponding time
index for this one with an interval of At of 0.0025 second. So this leads to you can say that
datasets available now and how we will apply the dataset for the phasor estimation technique

that we will learn.
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Least Square Estimation for Phasor

Examplef..
Time(s) (V) (m] = [41.47 = [V cf)s()
t 01 147 101.01 Vsinf
0 : /
t 0.1025 101.01 w= 21!'f = 21'[(50) =100m
§ 0.105 10137 assigning time for the calculation window, t, = 0.0 s and t, = 0.0025s
- : in A
0.1075 42.36 W
011 4147 For the corresponding samples as marked in the table
: ' i : 0 1
01125 -101.01 ne lsf"w‘o cos wlol =R
sinwt; coswty]  [5 %
0.1150 -101.37 V2 V2
0.1175 -42.36 g
= — [X] = (A"A] AT [
§ ) s
0.1225 101.01

Now as already pointed out, we have two unknowns in this case, VVcos and Vsinf which are
already formulated. So for simplicity minimum two samples are required. These two samples
corresponds to time index to and t1. So that corresponds to 41.47 at 0.1s and the next sample
101.01 is at 0.1025 s are the values of vo and vi. Hence the measurement matrix m and the
unknown matrix X can be represented as
_[41.47 _ [VcosB
[m] = [101.01 X]= [Vsine
In addition, considering w = 2nf = 2m(50) = 100w corresponding A matrix for the

respective time interval to and t; can be written as

_[sinwty, coswt

0 1
= |5 ] — [ 1 1 ]
sinwt coswt — =
1 1 \/E \/E
Now as per the least square estimation algorithm the unknown vector X can be represented as,

X = [ATA]7Y[A]"[m]
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Least Square Estimation for Phasor
Examplet...

0 =0 1
- | 38 3]s 5

1 =|lvz v2
\‘ZV\

=3 7]
N g

Sl = Sl

[X] = [ATA][A]" [m]

1 1.4342][41.47 - [

= 10101 ~ L4147

Then you can say that

[ATA]—l — [_31 —11]

This pseudo inverse becomes

1
0 —

[ATA]—l[A]T: [_31 —11] 1 \{F _ [—11 14(:)[42]
Noi

Note that because this is like a square matrix so this pseudo inverse is nothing but the inverse
of A also. So we will get you can say that if we try, this inverse of A matrix becomes also same
to this pseudo inverse agreed. This is to making a practice how to have the pseudo inverse

computation. Now the unknown variable matrix X becomes

X = [ATA] Y [A]"[m] = [—1 1.4142] [ 41.47] _ [101.37

1 0 101.01 41.47

So here, the first element X1=101.37 and the second element X, =41.47.



(Refer Slide Time: 23:03)
I, = e =

Least Square Estimation for Phasor

Example1..

V= [X2+X} =109-53(V), V(rms)=77.45(V)

X
9 = tan™! (X—Z) = 2225

1

Estimated phasor is 77.45222.25° (V)

Then as per the already we have formulated the peak value of V becomes

V= /Xf + X2 = 109.53 (V)

The corresponding RMS value becomes

109.53
Vims = \/E

= 77.45 (V)

The angle theta is

Xy
0 = tan™! (—) = 22.25°
an Xz
Therefore, the estimated phasor becomes 77.45222.25°. If you remember in DFT we got the
same thing, also here in this example we are talking about that peak value divided by root 2 we
are getting correct value for this part. This shows that the corresponding phasors being

estimated by the least square estimation using the two samples become also pretty good.
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Least Square Estimation for Phasor
Example2- Different window

i _ [101.01 Vcosf
Time(s) v (V) m] = 101‘37] [X] = [Vsine
01 4147
o 01025 101,01 w = 2nf = 2m(50) = 1007

t, 0105 10137 with t, = 0.0 sand t, = 0.0025s for matrix A

01075 4236 For the corresponding samples as marked in the table
0.11 -41.47

01125 10101 [4]= S‘“‘“‘O Coscheg)

sm Wty coswty =

0.1150 -101.37

0.1175 -42.36 [X] = [AT,‘JI_ [A]T [m]

0.12 4147

0.1225

Least Square Estimation for Phasor

Example2..
V= [X2+X} =109-53(V)

V(rms) = 7745 (V)
X
6 =tan! (X—f) = 67.25"

Estimated phasor is 77.45267.25° (V)

In first window, we got phasor 77.45222.25° (V)
in the second window we got 77.45£67.25° (V).

There is a phase shift of 45°which is correct
for the 0.4 kHz sampling for 50 Hz signal N=8

Now we will see how by shifting the window the corresponding algorithm works. For that we
will leave this one and we have a fresh sample in replace. Now these are the corresponding two
samples that constitute the window now. So in this window again, for simplistic for the least
square perspective. We consider that this as to and this as t1, and to again you can say that we
are talking about 0 second and t; again 0.0025. This reduces the computation burden for this

system also that is the advantage you can expect. Now the m matrix is given by

fm] = [101.01
101.37

The corresponding X again remains to be same given by



__[Vcos6
X1 = [VsinB

Corresponding A matrix now becomes equals to

. 0 1
_ [smwto cosa)to] _l1 1
©|sinwt; coswty| ﬁ ﬁ

Same as what we see in the earlier example also. So what we are doing here also that is
advantageous that the A matrix we are not changing that will lead to us to take a benefit of not
computing the A matrix repeatedly. Not only A matrix, if the A matrix remains to be same in
this process, even if we shift the corresponding window of the measurement then the
corresponding pseudo inverse computation this become also fixed one. So the advantage you
can say by doing we can say this approach is that A matrix can be computed a priory and then
that so also the elapsed pseudo inverse can be also computed a priori and you fix it and then
you only apply the corresponding m measurements whatever you do we have right now and
then with that measurement if you apply that you can say that, you multiply this fixed matrix
here then you can get the corresponding unknown vector X. Now this second window we will
see you can see how the corresponding X can be obtained. So similarly, you can say that we
got the corresponding A transpose is same you can say what you see here and the A matrix you
can say that this pseudo inverse matrix becomes this which happens to be A inverse also and
then you can say that it go, multiply the corresponding pseudo inverse matrix to this m and

then we get the X. So the X becomes

42.36

X =[ATA]7A] [m] = [101.01

Then you can say that from this X1 and X> we got the V to be 109.53 and the RMS value is

77.45, same what we got earlier also. And then the

6 =tan?! (ﬁ) = 67.25°
X2
The phasors becomes 77.45267.25°. So what we see here that there are two windows we
have observed now. In first window, we got the phasor to be 77.45222.25°. In the second
window, we go the phasors to be 77.45, same magnitude with angle 67.25°, a shift in angle of
positive value of 45°. Same thing we observe in the discrete Fourier transform also the, with

the shift in you can say that the window with more and more observations.



The window is being shifted you can say that with the window progresses you can say that
forward and then you can say that. Now what we say here that because this is you can say that
the corresponding sampling rate is 4 kHz and then you can say we have 50 Hz signal, so the
number of N becomes equals to 8 and then we are getting the corresponding 45° shifting by
this one which is correct, that we have discussed in the DFT you can say that, DFT based phasor

estimation.
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Phasor estimation in the presence of harmonics (Least Square Estimation)
Example 3
v, = 109.53sin(100mt, + 22.25")+5.48 sin(200mt, + 22.25°)+16.43 sin(300mt,, + 22.25")
10,95 sin(500mt, + 22.25°) (V)

Time(s) (V)

01 53,92

" 01025 10233
3 0105 | 9423
m 01075 4820
> o1 2977
, 0N 9219
Mes o1 s on ons o os o 0.1150 9838
= 075 5834

012 5292

01225] 10233

Now let us you can say that there is a chance that the signal may not be exactly fundamental
and that this may be contaminated by different harmonics component, we call it noises because
we are not, we are modeling in the least square sense only for the fundamental part. So we are
not modeling any harmonics and so we can consider them as noise. So this is a signal which
we have earlier also discussed you can say that with the fundamental we added you can say
that now the different components to the second harmonic, the corresponding other harmonics
component, third and fifth and so. So by considering the corresponding signal becomes
distorted like this, no more pure fundamental and then you can say that the corresponding signal
available, samples available are like this. With the same you can say sampling rate and this
and with one cycle becomes n equals to 8. Now we will see how these at this situations, how

the least square estimation technique will be good at.
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Example 3: Only with 2 measurements:

Time(s) (V)

0.f 53.92

01025  102.33 _[5392 _[Vcost
? 0.105 94.23 lm]_[102.33 [XI_[VsinG

0.1075 48.20

01 2977 w = 2nf = 2r(50) = 1007

04125  -92.19

0.1150 -98.38 = ls§nmz0 cosmulzl? }]

01175 5634 sinoty cosoty] |7 7

0.12 53.92

0.1225] 10233 (X] = [ATA][A]" [m]

Example 3..

V= [X24+X} =1056 (V), V(rms)=7467(V)

X
g = tan™! (X—:) =30.7°

Estimated phasor is 74.67230.7° (V)

correct phasor 77.45£22.25° (V)

So again two samples, first two samples, distorted signal, again to and t:. So we progress like
this m and X. So m becomes this,

_[53.92
(m] = [102.33
Only m is changing, X becomes
__[VcosB
X1 = [Vsine

Matrix A becomes same what we have considered earlier also



_[sinwty, coswt,

0 1
- ] _|l1 1
sinwt; coswt; ﬁ ﬁ

Then we apply this one and we calculate the corresponding X and when we use the X, we get
the corresponding V to be 105.6 and the rms value becomes now different one, 74.67 and the
angle theta not twenty two point something, it is now 30.7°. Therefore, you see that the
estimated phasor becomes for the same fundamental component for the first example also. Now
the current phasor you can say we got earlier was 77.4222.25°. Now we are getting you can
say that phasor estimated by this process to be different. It means that only using two samples
by the least square method we are not able to get the correct phasors as expected. So then what
to do?
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Example 3:With 8 measurements (1-cycle window)

Time(s) v (V) 5392 -
S
b - 5ge 1‘)042.‘2333 L [V sinf
4l 04025 102.33 4620
L[ 0105 94.23 [ =] o | @=wfimg(S0) = 100x
Bl 04075 48.20 _9219|  witht,=0.0sandt, =0.0025s ... t;=0.175's
Y 0.11 49.77 _og3g| for matrixA
ts| 01125 -92.19 -58.34 0 1
te 0.1150 -98.38 sinwty coswt, L_ L_
[ 0M75|  -68.34 sinot, coswty | Y
0.12 5392 5!"‘"iz coswfz 4
Sinwtz  cos wt; V2 V2
Q125 i 4= sinwt, coswti “Rab i
1

sinwts coswts| [-— -
sinwtg COSwtg
sinwt; CoSwi; 1

I

—
| Bk
w1

Now we will see what you can do also, we can have more measurements that is the flexibility
in this least square approach. So let us you can say that time for simplicity you can take more
than two, three, four, five, six, seven and then do. Let us say you can say that we are taking one
cycle here like we did it for one DFT. So to through we can say that t7, we have eight samples
here, one cycle. And these are we consider corresponding measurements, you can say that these
eight measurements will be considered here. So our measurement m here you can see that are
these eight measurements here. So X you can say that again happens to be same two unknowns,
a and b and ® you can say as usual. to we can say that we start from zero to t, you can say at
0175 that is the eighth sample we are talking about and for the A matrix we defined as you can

say that having earlier because now we can say that eight points measurement, sinwto, cosmto



and like this you can say that sinot7to coswtz. So by substituting the time index from to =0s to
t7 = 0.175s and ®=100. Then we got the A matrix to be

-0 1 -
1 1
rsinwty  CoSwty V22
sinwt; coswty 1 0
sinwt, coswt, i _ i
sinwt; coswts \2 \2
A=] . =
sinwt, coswty 0 -1
sinwts coswts 1 1
sinwts coswte V2 2
| sinwt; coswt,] -1 0
1 1
1z
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LU

(ATA) AT = 0 01768 025 0.1768 0 -01768 -025 -0.1768
025 01768 0 -01768 -025 -0.1768 0 0.1768

101.37
4147

V= [X2+X? =109-53(V) V(rms)="7745(V)

X
6 =tan! (—) = 22.25°
Xy

[X) = [A7A AT m) = |

Estimated phasor is 77.45222.25° (V)
This is correckthe phasor.

Now, if we apply this corresponding thing to that eight measurements for this estimation of the

phasors then we get the corresponding A, the pseudo inverse matrix to be like

[ATA]_l[A]TZ[ 0 0.1768 0.25 0.1768 0 —0.1768 —0.25 —0.1768]
0.25 0.1768 0 -0.1768 -0.25 -0.1768 0 0.1768

And the X matrix is written as

101.37

[X] = [ATAT Al [m] = [, 7

Then the corresponding V to be like



V =X?+ X2 =109.53(V) ; Vyps = 77.45 (V)

This is the correct one and

6 = tan™! (é) = 22.25°
Xq
The estimated phasor is 77.4222.25° for this first window. So that is the correct phasors we
are getting. So what we did here, that instead of two samples we took more samples which can
be easily accommodated in the formulation and by that we can say that the corresponding eight
measurements which we took from window. Thus by increasing the window size we are getting
the correct phasor estimation even though the corresponding signal is being contaminated by
the different harmonics. That is the beauty of the least square estimation technique what we

see from this example. Now we will go something more beyond this.

(Refer Slide Time: 31:39)
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Estimation of harmonic component (using Least Square Estimation)

Say we need 2" harmonic component to be estimated with fundamental
v, = V;sin(wt, + 6,)+V; sinQawt, + 6,)

v, = V; sinwt, cos 0, +V; sinf, cos wt,, +V, sin 2wt, cos 8, + V, sind, cos 2wt

; . v,

sin(wty) cos(wty) sin(2wty) cos(2wty) ¥, cosb3 X l)0

sin(wt;) cos(wt,) sinQwty) cos(2wt,) Vysinf4 X; 1
i i : : Vycosbzf> X, m=|:

A=
1 : $ : l/h,sxn(?_,\.x
sin(wt,) cos(wt,) sin2wt,) coswt,) 2 Un

7 X _V

X =[AT4 A m] | V= (02432 g, =tan-1(x_z) Vimg =%
1

i 24 y2 6, = tan~! é

2 harmonic | V, = (X5 + X} , = tan 2

In many applications, what happens that the relay may require second harmonic component,
third harmonic component, fifth harmonic component like this, like in one example in inrush
current detection in transformer for that we require second harmonic component estimation, so
different harmonic components may be required to be estimated correctly. Now in the DFT
approach and other approaches now in the least square sense also what we have formulated till
now only our target was to how to get the corresponding phasor value, fundamental component,
we do not bother about other you can say harmonic components. They were being completely

rejected in DFT one cycle and so. So if we did the corresponding particular harmonic



component to be estimated properly for utility in the relaying perspective and so then what to

do?

Now see here you can say that how we can do in the formulation in the least square perspective.
So what we say that we need again second harmonic components to be estimated here. Let us
say in addition to the fundamental, so we will formulate the corresponding signals v and
whatever we can say the fault signal will be received by the relay in terms of two components,

fundamental and the second harmonic component.
v, = V;sin(wt, + 6;) + V,sin Qwt, + 6,)

So, V; , 62 and V, and 6> are the four unknowns for the corresponding fundamental and the
second harmonic component. So we will expand the corresponding signal model to be like this

as we have done,
v, = V; sinwt,cos0; + V; cos wt,sinb; + V, sin 2wt,cosl, + V, cos 2wt, cosH,

This for the fundamental component first two terms and the second harmonic component, two
terms for the second harmonic component. Then the A matrix becomes for this case become

sinwt, coswt, SinZ2wt, cos2wt,
sinwt; coswt; sinZwt, cos2wt,y

sinwt,, coswt, sin2wt, cos2wt,

So therefore, the corresponding unknowns becomes four. So therefore, this becomes the
corresponding four cross something will be coming from the A matrix. So these results you
can say that in terms of that you have n number of measurements you can say that, then you
can put the corresponding matrix to be n times of this. So the X becomes

Vicos0,

V,sin6,

V,cos6,
V,sinf,

[X] =

So we have four unknowns, X1, Xz, X3, X4 and we have n measurements



Now this leads to we can say that same you can say that we will apply the corresponding least
square sense and then we will find out we can say that fundamental

Vy =X +X3;6, =tan"" (2)

1

And for the second harmonic case

V, =X+ X760, =tan"* ()

3
The RMS value you can say that can be obtained by from

Vi V2

Virms = ﬁ s Varms = ﬁ
So this is what you can say that we say that if we like to get the corresponding second harmonic
components then we have to formulate in the least square algorithm and then you can say that
we can use the pseudo inverse perspective where the corresponding A matrix is being changed
and so also the X matrix and then you can say that we can get this second harmonic component
fundamental. We can include like this, you can say there are other harmonic components in the
system also. Now note that you can say that we can accommodate more and more harmonics
but that leads to more computation process because the A matrix size will also increase and
more unknowns, more number of measurements also require for better estimation. Now also,
if you have included more number of components in the process, then your modeling becomes
more accurate and the estimation becomes better with more and more computational model.
That leads to situation in terms of all these things, if you only require the corresponding
fundamental part here V1 for this part, you do not consider this required somewhere here even
though you have modeled the systems, then we see that these matrices, these lines
corresponding to first two part, this part you can say that this is nothing but corresponds to the
fundamental part and then this block consider the difference for the second harmonic
component. Therefore, you can say that in the A matrix also and in the corresponding pseudo

inverse matrix those you can say the portions are being required for the computation



perspective. So you can optimize your computation in accordance with the requirement for the

relay application.

(Refer Slide Time: 36:14)
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Remarks
Least square estimation- provides phasors like DFT
It can manage with less number of samples for pure sinusoid
But with harmonics~ it is able to filter out with 1-cycle of data
—similar to 1-cycle DFT
- We can incorporate harm.onics also and get the magnitude and phase.

To reduce computation- matrix- [A] is fixed for a given window size and
signal sampling rate—so also the [4”A]~'[4]

So what do we see? We can say that in overall that the least square estimation technique also
provides accurate phasor estimations like in discrete Fourier transforms. If the signal is pure
like the steady state or so, we can say that we can manage with the less sample also, but if
signal having impurity, you can say that like in different situation we can have more and more
sample accommodating systems. We can incorporate harmonic components in the estimation
process also and you can say that to reduce the computation burden of A we can say fixed for
that particular window size, also, we can say that this pseudo inverse is being fixed. Therefore,
you can say that there is no need always to compute the corresponding inverse matrix so that
reduces the computation burden in the process. In overall, we say that least square is another
attractive technique for the phasor estimation perspective. In the subsequent lecture, we will

see that how this technique can be used in different other applications also. Thank you.



