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So, we are back again. So, you have seen that equation 7 regarding your water starting

time, right. 

(Refer Slide Time: 00:27)

For from equation 2 and 7 we can express the relationship between change in velocity

and change in gate position as, right. Therefore, we can write that is from equation 2 and

7, right. 



(Refer Slide Time: 00:45)

So, equation if you look at equation 7, it was your T W your d dt of delta U bar is equal

to minus delta H bar, right. So, from equation 2 substitute for delta H bar and then you

will get the T W d dt of delta U bar is equal to 2 into delta G bar minus delta U bar.

(Refer Slide Time: 00:45)

If you take Laplace transform it can write left hand side simply we can write S T W delta

U bar that function of S not putting again and again because it is understandable is equal

to 2 into delta G bar minus delta U bar, right. 



(Refer Slide Time: 01:21)

Or delta U bar upon delta G bar is equal to we can write that 1 minus S T W divided by 1

plus 0.5 S T W, this is equation 9, right. Now, equation 9 actually represent the classical

transfer function of a hydraulic turbine, right. It shows how the turbine power output

changes in response to a change in gate opening for an ideal lossless turbine, right. 

So, this is that your what you call this is the transfer function of the your what you call

for a classical model of hydro turbine, right and a transfer function, right. So, for an, so

non-ideal turbine so, this is ideal turbine, now say non-ideal turbine. 

(Refer Slide Time: 02:09)



Now, the  transfer  function  of  a  non-ideal  turbine  may  be  obtain  by  considering  the

following general expression for perturbed values of water velocity that is flow water

flow and turbine power. 

(Refer Slide Time: 02:19)

Say it can be written as say delta U bar is equal to here actually it is 11, it is a 11, right

delta U bar is equal to a 11 delta H bar plus a 12 delta omega bar plus 13 delta G bar,

right. And delta P m bar a 21 delta H bar a 22 delta omega bar and plus a 23 delta G bar,

right. So, where delta omega bar is the per units speed deviation, right. So, this actually a

11 by mistake I have written a 1 it is a 11, right. 



(Refer Slide Time: 03:05)

So, delta omega bar is the per unit speed deviation. Actually, the speed deviations are

very small especially when the unit is synchronised to a large system, right. So, that

mean delta omega is almost 0, so we can neglect it. 

(Refer Slide Time: 03:25)

Therefore, the terms related to delta omega bar may be neglected. Consequently you will

get delta  U bar is equal to a 11 delta  H bar plus a 13 delta G bar, right.  So, this is

equation 12. Similarly, delta P m bar is equal to a 21 delta H bar plus a 23 delta G bar

this is equation 13, right. 



(Refer Slide Time: 03:45)

So, the coefficients a 11 and a 13 are partial derivative of flow with respect to head and

gate opening and the coefficient a 21 and a 23 are the partial derivatives of turbine power

output with respect to head and gate opening, right. 

(Refer Slide Time: 04:05)

So, this a coefficients depend on machine loading and may be evaluated from the turbine

characteristics  at  the  operating  point,  right.  With  the  equations  12  and  13  replacing

equation 2 and 5 a, the transfer function between delta P m bar and delta G bar become,

it delta P m bar delta G bar is equal to a 23 your into 1 plus a 11 minus a 13, 1 upon a 23



into S T W divided by 1 plus a 11 S T W. This is equation 14, right. So, in terms of ‘a’

coefficient after manipulating this you will get this transfer function, right. 

(Refer Slide Time: 04:23)

The a coefficients vary considerably from turbine type to another, right from I mean from

different type of turbine this a value may be different. For an ideal lossless Francis type

turbine say a 11 is equal to 0.5, a 13 1, a 2 11 0.5 and a 23 1.0, right. It is simply data

from somewhere I have taken. 

(Refer Slide Time: 05:11)

Now, typical measured values of the a coefficients for a 40 megawatt unit with Francis



turbine as follows. So, this is some typical measured value I have taken.

(Refer Slide Time: 05:19)

Say load level when 100 percent a 11 is 0.58, but when it is no load it is 0.57. So, more

or less a 11 more or less constant, right. Now, load level when you come to a 13 100

percent rate it is 1.1 and that no load it is 1.1, so both two are same, right. Similarly, a 21

so, 100 percent rated 100 percent of rated 1.4, but at no load 1.18. 

So, this is changing your with the load, right and similarly your a 23 for 100 percent of

rated is 1.5 and for no load 1.5. So, only thing is; only thing is that only a 21 actually

changing, right about this is also constant, this is also constant this is also more or less

constant only a 21 is changing, right. 



(Refer Slide Time: 06:19)

So, special characteristics of hydraulic turbine. The transfer function given by equation 9

or 14 represents a non-minimum phase system. You might have heard this one that is

your non-minimum phase system. So, systems with poles or zeros in the, right half of the

S plane are referred to as non-minimum phase system, right. 

(Refer Slide Time: 06:39)

They do not have the minimum amount of phase shift for a given magnitude plot, right.

Such  systems  cannot  be  uniquely  identified  by  knowledge  of  magnitude  versus

frequency plot alone, right.



(Refer Slide Time: 06:53)

So,  special  your  special  characteristic  of  the  transfer  function  may  be  illustrated  by

considering the response to step change in gate position, right. For a step change in G

bar, for the ideal turbine, the initial value of then your given as, right.

(Refer Slide Time: 07:11)

So, that is actually see if you take a step change; if you take a step change that is your G

bar that is delta G bar we have seen all this thing. So, basically if you take a step change

of this one, G bar it will be 1 upon S, right. So, if you just put 1 upon S and you know the

limit S tends to infinity means t tends to 0 the initial values. So, S into 1 upon S your 1



minus S T W divided by 1 plus 0.5 S T W, right. So, just let me move little bit half, right.

(Refer Slide Time: 07:49)

So, numerator and denominator you divide by S T W. So, it will me S S will be cancel,

limit S tends to infinity it will be 1 upon S T W minus 1 and this will be 1 upon S T W

plus 0.5. So, as S tends to infinity this term is 0, this term is 0, it is minus 1 by 0.5, so

basically delta P m point 0 is equal to minus 2, right sorry. 

(Refer Slide Time: 08:15)

And the final value theorem is that delta m your P m bar that is steady state value that

steady state value is equal to delta P m bar infinity, limit S tends to 0 means that is your t



tends to infinity, right. That is why here it is written your here it is written in t delta P m

bar infinity that is actually t tends to infinity, the steady state value, so for S tends to 0.

So, S S will be cancelled, for a step input it is 1 minus S T W upon 1 plus 0.5 S T W. So,

if it is 0, so it is basically steady state value it is 1, right. So, what we see that initial

value is negative your delta P m 0 is equal to minus 2 here and final value that is your 1.0

the steady state value, right. 

(Refer Slide Time: 09:09)

So, the complete time response for a step infinity if you take it will be delta P m bar t is

equal to 1 minus 3 e to the power minus 2 by T W t delta G bar, right. So, this is actually

your what you call  that your final your what you call  that your because that is time

function, right. So, this little bit you can do it. 

Now, figure 2 shows a plot of the response of an ideal turbine model with T W is equal to

4 seconds. So, if you put here t is equal to 0, right at t is equal to 0 then basically it is

becoming what? 1 minus 3 minus 2, right. So, it is actually minus 2 here, right. And here

if you make your t is equal to your what you call t tends to infinity then your this term

will not be there, so it will become 1. So, actually it is settling to 1, right.



(Refer Slide Time: 09:59)

So, this is actually this plot is for T W is equal to 4 second for a unit step input, right for

a unit step input. So, that is why delta G bar is attached here, right. So, if you look into

that your what you call that change in turbine mechanical power following a unit step

change  in  the  gate  position,  right.  So,  this  is  actually  no  oscillation,  actually  going

straight from this part to this point your what you call anything to the steady state in 8 to

10 second, that is a simple classical model small example. 

(Refer Slide Time: 10:37)

Immediately,  following  unit  increase  in  gate  position  the  mechanical  power  actually



decreases by 2.0 per unit. It then increases exponentially with a time constant of T W by

2, right. 

(Refer Slide Time: 10:47)

Because here if you look into the expression it is e to the power minus 2 by T W into t

basically minus t by tau, so tau will be T W actually tau will be T W by 2 seconds. So,

this part, this part you can write e to the power minus 2 sorry just hold on; e to the power

minus 2 by T W t, right. 

(Refer Slide Time: 11:11)

This  equation  can  be  written  as  e  to  the  power  minus  t  by  tau.  So,  tau  is  the  time



constant, right and tau is equal to actually T W by 2, right. So, that means, if you draw a

tangent like this. So, it will come here. So, at your what you call and this is 2 T W by 2 is

equal to w is 4, so T W is 4 4 by 2 is equal to this is the 2, right. Approximately I have

made it here that is your 2, right. So, with a time constant to steady state value of 1.0 per

unit above the initial steady state value.

(Refer Slide Time: 12:05)

The initial power surge is opposite to that of the direction of the change in gate position,

right.  This  is  because  when  the  gate  is  suddenly  open  the  flow  does  not  change

immediately due to the water inertia, right. So, however, the pressure across the turbine

is reduced, causing the power to reduce with the response determined by T W. The water

accelerates until the flow reaches the new steady state value which establishes the new

steady state power output.

So, for hydro turbine actually for hydro turbine that means, suppose there is a sudden

increase in the load demand. So, initially what happened? Tat hydro power generation

immediately  that  it  cannot  generate  power  instead  of  gauge  in  your  what  you  call

generating power initially decreases, after some time it goes up. So, that is why this is

that your with this small your the turbine with this small example this is the thing. 

Actually,  for  when  we  will  connect  to  the  system  because  governor  thing  will  not

consider, right initially actually it if you plot the generation for hydro turbine initially it, I

am just making like this initially it will be like this. And finally, it will settle something



like  this,  right  lot  of  oscillations  will  be  there,  but  it  is  a  simply  first  order  model

governors are not considered, but initially it will be like this, right. 

(Refer Slide Time: 13:33)

So, therefore, next is the electrical analogy. Now, in understanding the performance of a

hydraulic turbine system it is useful to visualise a lumped parameter electrical analogy as

show in figure 3, right. 

(Refer Slide Time: 13:45)

So, this is a your what you call a simple analogy, this is a variable conductance it is given

G, an reciprocal of resistance, right and this voltage across be this is the current I and this



is inductor L and this is e 0. I is equal to GV, dI by dt can be written as 1 upon L E 0

minus with this is E 0 and this is V. So, dI dt is 1 upon L, actually L dI dt is equal to E 0

minus V and power P is equal to VI, right.

(Refer Slide Time: 14:19)

So, now, this is actually electrical analogy of a hydraulic turbines. So, how we will do

this? The hydraulic and electrical system are nearly equivalent with the water velocity U

gate  opening G and head H,  corresponding to  the  current  I  load  conductance  G an

voltage V, right. So, there I mean they are analogues to each other; your what you call

when you make this circuit, right. 



(Refer Slide Time: 14:43)

So, when the load is suddenly decreased by step reduction in conductance G that your

what you are doing is step reduction in conductance G means r is increasing, right that is

current  I  does  not  change  instantly,  right.  So,  however,  the  voltage  across  the  load

suddenly increases because of the reduction in conductance or increase in the resistance,

right. 

(Refer Slide Time: 15:05)

This causes the output power to suddenly increase. Initially so with a, so this causes the

output  power is  suddenly  initially  actually  this  causes  the output  power  to  suddenly



increase,  right.  With  a  rate  determined  by the  inductance  L the  current  I,  decreases

exponentially until a new steady value is reached establishing the new steady state output

power, right. 

(Refer Slide Time: 15:37)

The responses of I, V and P are very similar to those of velocity, head and power, right.

So, this is actually your what you call that analogy that with that hydro turbine thin this

circuit is a analogy to that one, right. 

(Refer Slide Time: 15:59)

So, next is that example 1. So, the data related to the turbine penstock and generator of a



hydraulic  power  plant  are  as  follows.  Generator  rating  is  given 140 MVA, penstock

length is 300 meter, say rated hydraulic head 165 meter and gate opening at rated load is

0.94 per unit.

(Refer Slide Time: 16:19)

So, turbine rating is 127.4 megawatt and piping area 11.15 meter square. These are the

data given, right these are the data given. So, hold on we will go to the next phase. So,

these are the data, right. 

(Refer Slide Time: 16:43)

So, water flow rate at rated load is 85 meter cube per second this is also given. Gate



opening at no load is equal to 0.06 per unit, right. So, you have to calculate the velocity

of water in the penstock and water starting time at full load. 

(Refer Slide Time: 17:05)

Next is determine the classical transfer function of the turbine relating to the change in

power output to change in gate position at rated load. So, these two things we have to

find out.

(Refer Slide Time: 17:17)

Now, solution; the velocity of water in the penstock at rated load is that is your U r is

equal to flow rate at rated load divided by piping area. So, flow rate is given 85 meter



cube per second and piping area is 11.15 so, 85 by 11.15 meter per second. So, that is

7.62 meter per second, right. So, water starting time T W at full load; that we know this

formula T W is equal to L U r divided by a g into H r, right. So, here it is given L is given

300 meter, U r is we have got 7.62 and this is ag is acceleration due to gravity 9.8 meter

per second square and H r is 165, right. So, it is actually T W is 1.41 second, right that is

the water starting time.

(Refer Slide Time: 18:13)

Now, the classical transfer function of the turbine at rated load is, we know this 1 minus

S T W upon 1 plus 0.5 S T W, right. So, you put T W is 1.41 second and your both the

numerator and denominator then transfer function will be 1 minus 1.41 S upon 1 plus

0.705 s, right.

So, in this case; in this case if you try to find out for a step input what will be the your

what you call, that your value of initial value of delta P m 0. I mean what will be for this

case at delta P m 0 will be that limit your what you call S tends to your infinity, that is t

tends to 0. So, S S will be cancelled, we have seen before only this term will be left out.

So,  you divide  numerator  and  denominator  what  you call  by  S,  right  if  you divide

numerator and denominator by S. So, it will be minus 1.41 divided by 0.705, so same as

before minus 2, right. So, similarly your what you call the final value theorem also when

t tends to infinity S tends to 0 it is 1, right. 



(Refer Slide Time: 19:29)

Now, example 2; so, this example actually it is a simplest example. So, question is that

here actually this hydro governor only we have represented by 1 upon R, that is kg is

equal to actually 1 upon R. But hydro governor modelling actually it is a second order

governor model, right or sometimes it is API data governor model, right. So, electric

hydraulic governor is there as well as mechanical hydraulic governor is also there. But

there, mechanism is different, but ultimately overall transfer function will remain more

or less same, right. 

So, but those governor model we have not considered here. What we have done is we

have simply represented some gain is equal to 1 upon R. So, here governor is not there. It

will be your what you call a second your what you call it will be second order model. So,

we do not want to complicate this. We have taken a simplest one, right and this is your

reference speed reference, I have forgot to note it that this is actually speed reference,

right. 

And in the during the synchronous machine modelling we have seen that this model we

are writing 1 upon K d plus S T M, right. So, there also we have seen that 1 upon 2 H S

plus K d, right. So, here also; that means, your T m actually if it is 2 H, right it is 2 H S.

So, T m is equal to 2 H, but here T m value is given, right. So, this way we have taken

and that is why this is delta omega R. But if you take in AGC form also I will write you

for you, right. So, this I have taken.



Now, following parameters your what you call that following parameters are taken T W

is equal to 2 second T m is equal to your 10 second, right that means, H is equal to 5

because T m is equal to 2 H and K d we have considered as a 0, right. We have, taken

your easy analysis we have taken K d is equal to 0. Therefore, you have to determine the

lowest value of droop R, this is that droop characteristic that governor, but other part

transfer function that is a quadratic one we did not consider here, right. 

So, just taken a simplest one; if you consider the quadratic one it will be very lengthy

and complicated as well as classroom exercise is concerned, right for which the speed

governing is stable. 

(Refer Slide Time: 21:57)

And b, the value of R for which the speed control action is critically damped. So, you

have to find out the lowest value of droop R for which the speed governing is stable. And

second here is the value of R for which the speed control action is critically damped,

right. So, this is my block diagram transfer function. 



(Refer Slide Time: 22:21)

Now, the characteristic equation of the form 1 plus GH is equal to 0 of the closed loop

system is 1 plus your 1 minus 2 S upon 1 plus S into 1 upon 10 S into 1 upon R is equal

to 0, right. So, if you make 1 plus GH, right. So, here your what you call you put T W is

equal to 2, right. So, it is actually 1 minus because T W is 21 minus 2 S divided by it T

W 2, so 1 plus S. So, that is why this is your 1 minus 2 S upon 1 plus S, right here. 

Now, next is K d is 0, but T m is 10, that is 1 upon 10 S, right. So, that is why it is 1 upon

10 S into this 1 upon R, here it is 1 upon R into 1 upon R is equal to 0, right. So, this is

the characteristic equation of the closed loop system. 



(Refer Slide Time: 23:19)

Now, if you simplify this one, if you simplify this one the 10 R S square plus 10 R minus

2 into S plus 1 is equal to 0. So, this is the simple quadratic equation, right. Now, for

stability the roots of the characteristic equation have to be in the left side of the complex

S plane. That means, whatever roots we will get that they will lie on the left top of the S

plane that is real part is negative, right. 

(Refer Slide Time: 23:43)

In  case  of  a  quadratic  a  sufficient  and  necessary  condition  is  that  all  quadratic

coefficients are positive, right I mean all the coefficient will be positive that is your 10 R



greater than 0 is a first thing, sorry. So, 10 R greater than 0, that is R greater than 0, right.

Similarly, this coefficient 10 R minus 2 this also has to be greater than 0. 

(Refer Slide Time: 24:07)

Therefore 10 R minus 2 greater than 0 that is R greater than 0.2 because 10 R greater

than 2, so, R greater than 2 by 10. So, R greater than 0.2, right, the smallest value of r

resulting in stable response is that 0.2 or 20 percent, right this is the smallest value of R.

Now, for critically damped, if you want then if you want critically damped then your

what you call roots will be same, right roots will be same that mean b square minus 4 ac

will be greater than will be is equal to 0. 



(Refer Slide Time: 24:43)

So, second case or critical damping that b this is b 10 R minus whole square minus 4 into

a, this is a and c is 1. So, minus 4 into 10 R is equal to 0, right. If you solve for this one

you will get R 1 is equal to 0.746 and R 2 is equal to 0.0536. But when R is equal to

0.746 corresponding to a critical damping that is your damping ratio zeta is equal to 1,

right and it gives a stable response, right. But if you consider R 2 is equal to this one, R 2

is equal to this one this will be your unstable response, right. So, this that means, your

this is the correct answer, but this is not, right. You can verify; you can verify even is mat

level, so, you can verify. 

So, this one for hydro turbine this way we have taken, but let me tell you one thing

regarding this modelling that suppose this problem this problem it is taken your what you

call your 1 upon K d plus S T m. Now, it is an isolated system not connected this thing.



(Refer Slide Time: 25:53)

But when we representing AGC we are representing K p upon 1 plus S T p this from,

right therefore, this equation instead of this law we can make it also this law K p upon 1

plus S T p, but at that time this will be your delta f, right. Suppose, if you make it like

this and this will be your delta f. So, in that case if you what you call if you make a K p

upon 1 plus S T p at that time your K p has to be known and T p has to be known, right

both has to be given. But in this case what do we do, that K d that is your when you are

doing that your AGC thing that delta P d upon delta f that is your actually d the damping,

right that your use that is you are d term we are using, right.

But otherwise if you what you call if you take K p upon 1 plus S T p absolutely no

problem, but at the time it will be delta f. So, results and other thing whatever we will get

the  philosophy  will  remain  same,  right.  Only  thing  is  that  this  part  here  that  hydro

governor modelling actually it will makes them complicated then your steam turbine that

your and this one actually makes our classroom exercise will make things difficult, right.

So, whenever some general idea is that for thermal power plant while for your AGC

modelling we have seen that it has generation rate constant, right. So, generally it varies

from unit  to  unit  steam turbine to  steam turbine,  but generally  it  is  3  percent  to  10

percent per minute with that it lies. Whereas, for hydro turbine actually the generation

rate limit and in the case of steam turbine the increase or decrease the generation rate

increasing or decreasing it is more or less same. 



Whereas, in the case of hydro turbine it is not like that, right. So, and it is very high

value, right. Some typical thing is that that 360 your person per minute for rising the

generation and for lowering the generation it is 270 person per minute. So, it is so high

that your generation rate GRC or Generation Rate Constant for hydro turbine it does not

have  any  effect  on  the  your  what  you  call  dynamic  responses.  But  because  of  that

governor time constant hydro turbine, right it is it has a your different time constant and

larger than your steam turbine governor time your what you call time constant. 

That is why responses when you will take I mean for the your what you call that your

theoretical exercise or your for academic interest if you take those transfer function of

the governor and see the responses it takes more time to settle because it is because it is

because of its time constant, right. It takes more time to settle compared to your steam

turbine.

 But when you use interconnected one area say thermal system another area is hydro

system there also because of this effect you will find it takes longer time to settle, right.

So, this is some general ideas, so, hydro turbine. So, after this we have one more hour.

So, there we will see different type of limiters and some new things, right.

So, with this thank you very much. We will back again.


