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We are back again to this equation right.
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Now, to solve for g desire, we must solve for delta x using equation 36 right earlier 36 I

have shown.
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Then calculate x new the new values of all x right is equal to x plus delta x and reapply

equation 36 until either delta x get very small or gx come close to g desire right.
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Now, let us return to the state estimation problem as given in equation 30.
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So, earlier we have seen that your minimize your J X i is equal to 1 to N M that is

number of measurement then in bracket Z i minus fi x whole square divided by sigma i

square. I told you once again that why you have divided it by sigma i square its a small

question to you right. So, you will you apply you will answer it in forum. 

First what we have to do is, we have to first find out the gradient of JX. So, gradient of J

X it can be written as delta J X delta x 1 delta J X delta x 2 and so, on you have n ns

number of state variables right. So, this way you have to get the gradient now and this is

the function J X. So, you have to take derivative with respect to x 1 x 2 x right all partial

derivatives you have to take. 
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Now, if you do so, then gradient of J X it can be written as that minus 2 will  come

because of your this thing because square is here, square is here right. If you do so, then

it will be minus 2 into delta f 1 upon delta x 1, delta f 2 upon delta x 1, delta f 3 upon

delta x 1 and so on right you have if you look into that you have i is equal to 1 to N m.

So, N M number of measurement, so, it will go up to N M. So, then delta f 1 upon delta x

2 delta f 2 upon delta x 2 delta f 3 upon delta x 2 and so on right. 

So, actually it is continuing it is also continuing, it will also continue understandable.

Then this  term automatic  will  come 1 upon sigma diagonal  matrix  1  upon sigma 1

square, 1 upon sigma 2 square it will continue all other elements are 0 that is why these

are shown 0 right into Z 1 minus f 1 x Z 2 minus f 2 x and it will continue because you

have nm number of your measurements right. 
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Now, if we put that fi x function in a vector form your fx and calculate the Jacobean of fx

we would obtain. Now if we write delta fx upon delta x in general right. So, it is actually

it will like a if you do it. So, it will be delta f 1 upon delta x 1 delta f 1 upon delta x 2

delta f 1 upon delta x 3 and so on. 

Similarly, delta f 2 upon delta x 1 delta f 2 upon delta x 2 delta f 3 upon delta f 2 upon

delta x 3 and so, on. So, it is basically Jacobian matrix its basically Jacobian matrix. If

you look into this matrix and if you look into this matrix you will find it is transpose of

another one right. Therefore, we call this matrix H; that means, this matrix this Jacobian

matrix this one we are calling is as a matrix H right. So, basically this is a Jacobian

matrix Jacobian of f x right. 
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That means; that means, this H can be written as delta f 1 delta x 1, delta f 1 delta x 2

delta f 1 delta x 3 and so on up to nm number of your what you call measurement you

have right. Similarly, delta f 2 upon delta x 1, delta f 2 upon delta x 2, delta f 2 upon

delta x 3 and so on right.
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Therefore it transposes if you take the transpose of this matrix, it H transpose it will be

delta f 1 upon delta x 1 delta f 2 upon delta x 1 delta f 3 upon delta x 1 and so on. So,



delta f 1 upon delta x 2, delta f 2 upon delta x 2 and delta f 3 upon delta x 2 and so on

right; that means, this equation this actually this will be H transpose right. 
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And then that is your then this one that your R is equal to sigma 1 square sigma 2 square

initially  at  the  beginning  of  this  state  estimation  R,  somehow I  overlooked that  1  I

mentioned that it is R inverse it is not R inverse it is R right because it is 1 upon sigma 1

square right. So, when you take R inverse at that time it its basically R matrix right. So,

we are defining like this. So, everything is actually everything is. 

So, now equation 38 now can be written as that it is if we take this one is R it is 1 upon

sigma 1 square 1 upon sigma 2 square will come because it is a diagonal matrix that is

why this R inverse right. So, equation 38 can be written as the gradient of J X actually is

equal to minus 2 into then I told you it will be H transpose then R inverse into Z 1 minus

f 1 x, Z 2 minus f 2 x and so on right.

 That means, this equation; that means, this equation minus 2 H transpose then R inverse

because R is equal to sigma 1 square sigma 2 square like this and these are all 1 upon 1

upon other elements are 0 that is why R inverse and this is Z 2 1 minus f 1 x, Z 2 minus f

2 x right. So, that is this is the equation 43 right. 
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Now, to make this gradient 0 right we will apply Newton method as given in equation 37

right. So, in equation 37 actually this is actually assume that your gx is equal to; gx is

equal to gradient of J x right therefore, g; that means, g dash x will be del x of gradient of

J x, because J because you have to; you have to solve it iteratively right.

So, in that case you have to first sorry first you assume gx is equal to the gradient of J X,

then g dash x will be del del x of gradient of J X. So, you have to first the gradient to 0

iteratively. So, we know we knew that formula that delta x is equal to just now we have

done it in equation 37 right it is actually g dash x inverse into minus g x right, so, g dash

x inverse minus.  So, this  is  your this  is your g your gx. So, that  is  why it  is minus

gradient of J X and this is your g dash x that is your del del x of gradients of Z derivative

of  this  one.  So,  this  is  actually  delta  x.  So,  this  is  equation  44  I  hope  this  is

understandable to you right. 
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So, the Jacobian of that gradient J X is calculated by treating H as a constant matrix.

Now assume H is a constant matrix then what we will do that, this del del x of gradient

of J X you have to compute. That means this is my this is my your gradient of J X, we

are assuming H is a constant matrix R of course, is a constant matrix H is a constant

matrix, then you have to take the derivative with respect to x of this gradient right. So, if

you do so, that equation 43 if you take if you do so, then del del x of gradient J X is

equal to del del x of minus 2 H transpose R inverse into that Z 1 minus f 1 x Z 2 minus f

2 x and so on right. 

So, if you take this thing, then it will become actually minus 2 H transpose R inverse and

if you take the derivative of again, it will come your in general it will come del f upon

your what you call del f upon del x in general. So, basically it will be nothing, but your

Jacobian matrix. Because here we have shown that here we have shown that if you take

del fx upon del x it is nothing, but your Jacobian matrix that is your H right here it is H.

So, that is equation 39.

So; that means, if you take with respect to this one also. So, basically it is minus sign is

there that is minus will be there and in general del f upon del x is nothing, but the H the

Jacobian  matrix  right;  that  means,  the gradient  of  your  derivative  of  this  gradient  is

nothing, but 2 H transpose R inverse H right this equation 45. So, this is after doing this



you have got the gradient right. So, assuming that H and your all H matrix is a constant

one.
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So, next is, then we know that delta x is equal to your what we have seen? Delta x is

equal to g dash x inverse right g dash x nothing, but the gradients derivative. So, this is

our this is our g dash x that is del del x of gradient of J X. So, that is H transpose R

inverse H inverse right and was 2 was there. So, because of these 2 we have made it 2

inverse that is half, so, it is half right.
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Because here, so, here it was 2 was there. So, when you take inverse of this one, when

you take inverse of this one as you are taking inverse because of 2 it will be half, and

then H transpose R inverse H inverse right. So, that is what we are writing there that is

what we have written here right half H transpose R inverse H whole inverse into the 2 H

transpose R inverse Z 1 minus fx 1 Z 2 minus f 2 x, f f 2 x and so on right. So, 2 2 will be

cancel this is 2 and this is 2 will be cancel.
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So, ultimately it will become delta x is equal to H transpose R inverse H whole inverse H

transpose R inverse,  Z 1 minus f 1 x Z 2 minus f 2 x this is equation 46 right.  So,

equation 46 is; obviously, close parallel to equation 23, because if you look equation 23

you will find very close to that right. To solve the ac state estimation problem you apply

equation 46 iteratively as shown in figure 10 that means, a flow chart is given right. 



(Refer Slide Time: 10:22)

So, note that this is similar to the iterative process used in the Newton’s power flow

method. Its basically Newton’s method that your what you call that your iterative method

right. 
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Now, if we come back to if we come back to this your what just let me reduce the size.

So, if we come back to this that first you have to start,  then read measurement;  that

means,  all  Z measured values all  the measurement  data  you read.  Then pick starting

value for x is equal to x naught right superscript is given x is equal to x naught. Then you



solve for you are what you call Z i minus f ix for i is equal to 1 2 up to n M number of

your measurement right 

So, once you made it, then calculate H matrix as function of x right. So, that also you

have the H matrix I told you that is a Jacobian matrix of f actually right and with the

initial values you have to calculate H also right. If it is not this thing if it is not function

of f then directly you will get it right. 
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So, calculate now H transpose R inverse H matrix right so, that you can calculate. Now

calculate H transpose R inverse H inverse now you have to calculate this one right step

by step. Then you solve for delta x using equation 46, that this equation that is your this

using this equation you solve for delta that is delta x 1, delta x 2 like this it is in general

is what you call is a vector right. 

So, once you have done this right then calculate maximum of delta x i I mean you have

you have so, many your. So, you are what you call  you are getting I am just let me

increase the size right just hold on just hold on. So, let me increase the size then I will

tell you this one. 

So, suppose what you are doing is, suppose you are you are you have so, many variables

that delta x i right is equal to delta x 1, delta x 2 like this you have ns number of state

variable right. So, every time you are trying to find out the mismatch right, then you are



taking absolute that what you take? That you take absolute of your delta x 1 I am putting

in my way then absolute of delta x 2 all you are taking for n number of state variables

right.

Out of which what to do? You find the max of that; that means, here I am making like

this, but for your understanding, suppose delta x max is equal to your max of right your

delta x 1, then delta x 2 like this right you find out maximum I take all the your what you

call delta x values and take out of which the maximum or absolute of course, the absolute

value will take right. 

And if that max value if that delta x that is max delta x i is nothing, but the your delta x

max. If that max value is your less than epsilon you specified epsilon for example, say 10

to the power minus 4, the specified epsilon if it is less than epsilon your solution has

converged right. 
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Otherwise; that means, if it is less than epsilon, yes then your what you call then your it

is solution as converge that is yes right that is done. If it is not, then you update x is equal

to your x plus delta x. That means, x 1 is equal to in general x 1 I mean in general

iterative method when you write that is in general, it will be x i k plus 1 is equal to x i k

right plus delta x i k that is in general. So, that is why I mean in the flowchart form we

have written x is equal to x is a vector actually right. 



So, many state values are there. So, x is equal to x plus delta x update and after updating

that you will come back to here this thing again you start right you got the new value of

x, your what you call x then again solve for this 1 and repeat this process till the solution

as converge right. 
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So, this is actually AC, but only thing is that, that in AC network right we cannot solve

problem in the classroom without computer. So, whatever little  bit  whatever you get

from the steady state point of view and theory point of view right. So, we otherwise it is

not possible. 

So, next is your what you call that your state estimation by orthogonal decomposition.

So, in this case that what happened why we will go for orthogonal decomposition? So,

basically in this method we will use one thing any orthogonal decomposition, you can

see  any  control  system  book  or  any  article  also  any  control  system  book  or  any

optimization thing, that orthogonal decomposition we will get. And here in this course it

is not possible to explain in detail, that givens rotation method will be used right. 

So, directly I will tell you right and if you have any problem then you put the question in

the forum we will see that, but givens rotational method will be used. So, those givens

rotational method cannot be explained here, but directly I will write assuming that you

will study of your only this part only this small part right. 



So,  now  state  estimation  by  orthogonal  decomposition  that  why  we  will  go  for

orthogonal decomposition. Definitely there must be some reason or that right. So, one

problem  with  the  standard  least  square  method  presented  earlier  is  the  numerical

difficulties, encountered with some special state estimation problems right.
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Sometimes that you know matrix may become singular or something like that. So, you

may not get any result any result right you have to overcome that one of these; one of

these  comes  about  your  when wish to  give  a  state  estimation  solution,  to  match  its

measurement almost exactly right. So, this is the case when we have a circuit which are

shown in figure 11 right.
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So, this is actually W 12 measurement is 32 megawatts right and this is your load here

your load is there or generation whatever you will take it does not matter that, it is meter

1. So, its reading is 0 it is 0 right. And another meter is there that is your W 32 it is 72

megawatt all are megawatt right and this is your what you call that your load is going

that 100 megawatt and here it is 100 megawatt is entering because if you just go for

power summation thing then you will get this result right. So, these are meter.

So, meter means same thing same thing it is actually M 1 2 is nothing, but W 1 2 right it

is M is nothing, but your W 3 2 right and here it is M 1, so, it is basically W 1. So, same

thing right by when i write meter. So, I put meter here W and M that is why I made it

here W, here it is W, and here it is W such that there should not be any confusion right. 

So, 0 injection system example, so, here injection should be 0 right because load is 0, so,

no power injection. So, these are the things suppose this is meter reading and these are

the thing. Now, some data we have taken and given this thing right. 
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So, now all of the actual flows and injections are shown in figure 11. So, this is meter

reading and based on that some line flows and other things are given, some data are

given these are the given data right. 

Now, in this example the measurement power at bus 1 will be assumed to be 0 megawatt.

That is here at bus 1 that measurement power will be 0 megawatt right. Suppose your if

the value of 0 is dictated by the fact that the bus has no load or generation attached to it,

then you know this value of 0 megawatt with certain with certainty and the concept of an

error in this measure value is meaningless right. 
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Now, nonetheless we proceed by setting of the standard state estimator right equations

and specifying the value of the measurement sigma for M 1. Suppose for M 1 that sigma

M 1 that is a standard deviation is 10 to the power minus 2 per meter 1 which was

corrected  near  bus  1 right  this  result  in  the  following solution  when using  the  state

estimated equation 33.
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Suppose if we do so, suppose power flow estimate on line suppose the data is given 1 to

2 30.76 megawatt using the your same data. Now power flow estimate on line 3 2 72.52



megawatt and injection estimate on bus 1 is 0.82 megawatt; that means, this is not 0

because although we expect it should be 0, but it is showing some 0.82 megawatt. 

And in a power system you have a huge many numbers of measurement things are there

so, gross error will be quite large right. So, the estimator has not force the bus injection

to be exactly 0, instead it reached its 0.82 megawatt, this may not seem like such a big

error right.
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However if there are many such buses say 100 buses in a network right and they all have

errors of this magnitude, then the estimator will have a large amount of load allocated to

the buses that are known to be 0 right. At first the solution to this dilemma may seem to

be simply forcing the sigma value to a very small number for the 0 injection buses and

rerun the estimator the problem with this is as follows right. 
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Suppose we had a change the 0 injection sigma for that is sigma M 1 is 10 to the power

minus 10; that means, the meter is actually very accurate 10 to the power minus 10 sigma

means, it is almost 0 error right suppose you have made it. Hopefully this would force

the  estimator  to  make the 0 injection.  So,  dominant  that  it  would  result  in  the  your

correct 0 value, coming out of the estimator calculator right. 
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In this case the H transpose R inverse H matrix using the standard least square method

would look like this for the sample system sorry. So, H was given the same H was taken



previously. So, in this case of your what you call your R only your meter 1 it is not all

minus 20 this thing right only for sigma 1 that is sigma M 1 we have taken 10 to the

power minus 10. 

So, its square will be 10 to the power your minus 20 right. So, this R is given 10 to the

power your this is actually other things remain same previously. So, it will be 10 to the

power minus 4, 10 to the power this is actually 10 to the power minus 20 right. 

So, if we do so; if we do so, then H transpose R inverse H actually it will be something

like this. 56.25 into 10 to the power 20 minus 37.5 into 10 to the power 20 minus 37.5

into 10 to the power 20 and 25 into 10 to the power 20 these values are very large rise. 
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Unfortunately this matrix is very nearly singular right. Singular means it inverse may not

exist because you have to ultimately you have to calculate this inverse right. So, in this

case what will happen? The reason is that the terms in the matrix are dominated by these

terms which are multiplied by the 10 to the power 20 terms right from the inverse of the

R matrix. And the other terms are so, small by comparison that they are lost from the

computer; that means, unless one is using an extraordinary long word length or extra

double precision right.
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So, when the above is presented to a standard matrix inversion or run into a Gaussian

elimination solution routine right and error message will result and garbage comes out of

the estimator, because you will not get anything because matrix becoming singular. 
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So, the solution to this dilemma is to use another algorithm of the least square solution

and  this  algorithm  is  called  the  orthogonal  decomposition  algorithm  and  works  as

follows right. So, that is why we follow orthogonal decomposition such that you will get

a reasonable good solution. 
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So, the orthogonal decomposition algorithm. This algorithm actually goes under several

different names in texts on non-linear, your what linear algebra right. It is often called

QR algorithm or the Gram Schmidt decomposition technique right because, but here we

are not using this QR algorithm or this thing because we are using R matrix something

right. So, we will name this as a QU rather than QR algorithm right. 

The idea is to take the state estimator you are what you call least square equation that is

equation 23 we have seen and eliminate the R inverse matrix as follows. 
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So, we have to eliminate R inverse, because this actually creates problem that is why you

go for  orthogonal  decomposition.  So,  R inverse  you can  write  R to the  power  it  is

actually earlier I wrote that it actually your what you call in bracket R to mention R

matrix the same thing, these R actually these R this is same thing just write in bracket

again and again I did not put it right I did not write it. So, it is R matrix actually right. So,

these R inverse it can be written R to the power minus half into R to the power minus

half right. 

That means, your; that means, your where R to the power minus half will be actually

earlier it was R to the power your what you call earlier R 2 inverse it was 1 upon sigma

M 1 square 1 upon sigma M 2 square 1 upon sigma M 3 square like this. So, in this only

you have taken that your 3 measurement case right. So, therefore, R to the power minus

half will be 1 upon sigma M 1 1 upon sigma M 2 1 upon sigma M 3 like this is equation

48 right. 
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Therefore this equation H transpose R inverse H inverse which whole inverse is equal to

you can write H transpose R to the power minus half into R to the power minus half into

H to the power minus 1 right that can be written as H dash transpose H dash. Because

this one because this one this one if you assume that this is my H dash, this is my H dash

is equal to R to the power minus half then your H right. 



This you have then H dash transpose will become H transpose right then you are what

you call that you are R to the power minus half because it is a diagonal matrix. So, no

question of putting transpose right.  So,  that  is  why this  1 we can write  that  H dash

transpose into H dash this is equation 49 right. 
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So, with H dash is equal to just hold on with H dash is equal to R to the power your

minus half into H right that is the equation 50. Finally equation 23 will become that x

estimated is equal to H transpose H dash transpose H dash to the power inverse into H

dash transpose into j dash measure, this is equation 51 right. Now let us assume what we

have done is that Z dash Z dash measure is equal to R to the power minus half into Z

measure right. So, this is equation 52. So, just assuming this right, so, that is why it is Z

dash measure. 
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Now, the idea of the orthogonal decomposition algorithm is to find a matrix Q such that

H  transpose  is  equal  to  QU  right  this  is  equation  53.  The  matrix  Q  has  a  special

properties  it  is  called  an orthogonal  matrix.  So,  thus  Q transpose Q will  be identity

matrix i right; that means, Q transpose will be is equal to basically Q inverse right. So,

this is Q transpose Q is equal to say I, where I is the identity matrix which is to say that

the transpose of a Q is its inverse right. 
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The matrix U is now a upper triangular in structure although since the H matrix may not

be square U will not be square either right. Therefore, we can write H dash is equal to h

dash 1 1, h dash 1 2, h dash 2 1, h dash 2 2, h dash 3 1, h dash 3 2 is equal to Q U is

equal to Q is a 3 into 3 matrix it will be q 1 1, q 1 2, q 1 3, q 2 1, q 2 2, q 2 3, q 3 1, q 3 2,

q 3 3 and u is a upper triangular. So, u 1 1, u 1 2 it is 0 u 2 2 and it is 0 0 right. 
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Now, if we substitute Q U for H dash in equation 51. In equation 51 you just substitute

that you are this thing right, you substitute here. 
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If you substitute then you will get X estimated will be U transpose Q transpose Q U

whole inverse, then U transpose Q transpose Z right Z dash this is equation 56 where Z

dash is equal to Z dash measure right. Therefore, X estimated will be U transpose U

inverse because Q transpose Q is equal to identity matrix I right because this Q transpose

Q is equal to identity matrix I right therefore, your this x estimated will be U transpose U

inverse into U transport Z cap right. 

So, Z that is your Z cap is equal to Q transpose your what you call Z dash that is Q

transpose Z dash is equal to Z cap and Q transpose Q is equal to I. So, this is actually I

right.  So,  our  objective  was  to  eliminate  that  R  inverse  that  is  R  matrix  from that

mathematical equation right. 
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So, then by rearranging, you will get U transpose U X estimated is equal to u transpose Z

cap this is equation 59 right. And we can eliminate U transpose from both sides so, that

we are left with. So, both side U transpose U transpose you can eliminate. So, you are

left with UX estimated is equal to Z cap look how simple it has come now right. The

expression finally, had become in the simple form by orthogonal decomposition right or

u is equal to you know u 1 1, u 1 2 it is upper triangular. So, 0 u 2 2, 0 0 x 1 estimated x 2

estimated this is Z 1 cap Z 2 cap and Z 3 cap.
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So, if you solve this one then X 2 your estimated is equal to Z 2 cap upon u 2 two this is

equation 62 and x 1 estimated is equal to 1 upon u 1 1 Z 1 cap minus u 1 2 x 2 estimated

right.
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For the givens rotation method we start out to define the step necessary to solve right.

So, this givens rotation method actually little bit we will see not much little bit we will

see and then your what you call then we will try to see few examples at the end right. 



So, we will make few examples for you and throughout the course its actually its course

is mostly your mathematical. So, mathematical oriented and mathematics are there. So,

and all the problems are not small problems, but we will see how things can be done

right and all these analysis we have tried to see it.

So, thank you very much we will be back again.


