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So we are, we are back again, so in the previous example we have seen that, the delta 1

and delta 1 and delta 2 the state variables for the three-bus system since knowing them

allows all other quantities to be calculated right.

(Refer Slide Time: 00:31)

So,  in  general  the  state  variables  for  a  power  system  consists  of  the  bus  voltage

magnitude at all buses and the phase angle at all but one bus that is slag bus right.
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Note that we could use real and imaginary components of bus voltage if desired.

(Refer Slide Time: 00:53)

So, this all these things we have seen. If we, but just starting from the end of the previous

lecture. If we can use measurements to estimate the “states” that is, voltage magnitude

and phase angle in this case of the power system, then we can go on to calculate any

power flows, generation loads, and so forth right; that we desire.



(Refer Slide Time: 01:15)

The transformer taps and phase angle regulator positions should also be considered as

state  variable  since they must  be  known in  order  to  calculate  the flows through the

transformers on and regulators right. So, that is what we have seen. Now just hold on.

Let me increase the size.

(Refer Slide Time: 01:43)

So, now to return to the three-bus DC power flow model, we have three meters providing

us with a set of redundant readings with which to estimate the two states that is delta 1

and delta 2. There are two states, but we had three measurements right.



(Refer Slide Time: 01:59)

.

So, re readings are redundant since only two readings are necessary to calculate delta 1

and delta 2. T he other reading is always “extra”. However, the “extra” reading does

carry useful information and what not to be discarded summarily right.

(Refer Slide Time: 02:17)

So, that is why if it is so, then that then we will go for a new concept right. That how we

can accommodate  all  this  thing.  So,  for  state  estimation  that  we will  do static  state

estimation,  but we will see three types of phases way of c. Mainly one is that when

number of state  variables  are greater  than your number of measurement.  That  is  n s



greater  than  n  m.  Another  case  number  of  state  variable  is  equal  to  number  of

measurement that is n s is equal to n m. Another is number of state variables where n s

less than n m that is number of state variables less than number of measurements right.

So, Maximum likelihood weighted least-square estimation. Likelihood means probability

right. So, statistical estimation refers to a procedure which are you which one use a use a

samples to calculate the value of one or more unknown parameter in a system. Since the

samples that is measurements right. I have underlined this one are inexact; that is not true

value not correct value right.

(Refer Slide Time: 03:13)

The estimate obtained for the unknown parameter is also in a inexact, but we have to see

that how close it is to the true values right. This actually leads to the problem of how to

formulate a “best” estimate of the unknown parameters given the available measurement

right.
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The  following  three  are  perhaps  the  most  commonly  statistical  criteria  encountered.

Number  1  is:  The  maximum  likelihood  criteria.  Here  actually  that  is  maximum

likelihood means it is probability. Then you are maximize the probability right. Where

the objective is that to maximize the probability that the estimate of the state variable X

cap right is the true value of the state variable vector X. That is maximize P X cap is

equal to X you have to maximize the probability this is maximum likelihood criteria

right.

(Refer Slide Time: 04:13)



Next one is, that you are the weighted least-square criteria; here where the objective is to

minimise  the  sum  of  the  squares  of  the  weighted  deviations  of  the  estimated

measurements that is z cap from the actual measurement that is z right. sorry. So, this is

weighted ;east-square criteria.

(Refer Slide Time: 04:35)

Third one is the minimum variance criteria right. In this case that the object is actually

objective right, by it is written object it is objective. Where the objective is to minimise

the  expected  value  of  the  sum  of  the  squares  of  the  deviation  of  the  estimated

components of the state variable vector from the corresponding components of a true

state variable vector right.

So, these are the actually it was your what you call it is variable and it is actually true

right; true state variable vector. This is little bit cut but a just I am telling this one, this is

actually true value right. So, that is actually this three different criterias you have and we

have to follow certain things right; rhe certain mathematical procedure.
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Now, when normally distributed, that is unbiased meter error distributions are assumed

that each of these approaches results in identical estimators right.  We will utilise the

maximum likelihood approach because the method introduces  the measurement  error

weighting metrics R. Sometimes what I will do, when I am writing it is actually R it is R

matrix  instead of  that  some later  values  R only;  so understandable  right.  Just  put  in

bracket that is the source that your matrix right. So, it is in a straight forward manner.

(Refer Slide Time: 06:01)

Student: Sir, (Refer Time: 05:59).



We will  utilise  the maximum likelihood approach because the method introduces the

measurement error waiting matrix R right in a straight forward manner. So, sometimes I

will simply right that simply right r right. So, but here I am made it in bracket R to show

that it is a matrix. So, the maximum likelihood procedure ask the following questions.

That is what is the probability in bracket I have written or likelihood that I will get the

measurement I have obtained right; so this is that criteria the maximum likely proceed

your likelihood procedure right.

(Refer Slide Time: 06:41)

So, this probability actually depends on the random error in the measuring device that is

transducer as well as the unknown parameters to be estimated. Therefore, a reasonable

procedure would be one that simply choose the estimate as the value of maximizing,

maximizes this that provide that maximizes the probability right.

The  maximum  likelihood  estimator  assumes  that  we  know  the  probability  density

function that is equal PDF right, of the random errors in the measurement.
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Now, first let us introduce the concept of random measurement error. The measurement

errors are assumed to be in error, we are assuming that every measurement has some

errors. For example, when you are doing your experiment in the laboratory you have

ammeter, voltmeter, wattmeter and other type of meters when you take the reading you

will see that as soon as you connect and try to take the reading you will find the point are

actually oscillating around some point. When that pointer is settling to some point you

are taking the reading, basically you are taking the mean reading right. Because it is or

two reading is there, but both side you will find a point that is oscillating.

So,  ultimately  when it  is  settle  down your taking the reading basically  that  is  mean

reading right. And in the ammeter or voltmeter just check it will be written somewhere

are so, instruments that accuracy. Suppose if  it  is written that accuracy plus minus 3

percent right. That is if it is written like this, so that is actually 3 sigma right is equal to

plus minus 3 percent the standard deviation right.

So, that the value obtained from the measurement device is close to the true value of the

parameter  being  measured,  but  differs  by  an  unknown  error.  Because  it  we  are

measuring, but measurement is not your exact right; it is in exact inexact. So, some error

will be there.
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So, now let  us let  us make it  like this,  that  you assume that  Z measure right;  let  Z

measure  that  is  your  this  one  be the value  of  a  measurement  or  as  received from a

measurement device.  It may be it may be volt,  it  may be current, ampere,  it  may be

megawatt, it may be mega bar right like this.

So, that the hand and let Z true, this is Z true be the true value of the quantity being

measured. This is the measured value and this is the true value right. Now let zeta be the

random measurement error right. Therefore, we can right that Z measure is equal to Z

true plus zeta; this is equation 1. So, this is our true value, but we are assuming that zeta

be the random measurement error. So, Z measure actually g g Z true plus zeta right.
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So, that way that way we will define that, than now the random number zeta actually

subs to  the  model  uncertainty  in  the measurement  right.  So,  this  is  actually  random

number it subs to a model the uncertainty in the measurement. 

If  the measurement  error is unbiased right the probability  density function of zeta is

usually  chosen  as  a  normal  distribution  with  zero  mean.  So,  that  means,  if  the

measurement error is unbiased the probability density function of zeta is usually chosen

as normal distribution with zero mean I mean would not mean is zero. Therefore, if it is

happens, so note that the other measurement probability density function will also work

in the maximum likelihood method as well.

So, it mean value of I mean we are writing Z measure in the previous equation 1, Z true

plus zeta right. If the mean value of the your what you call, that a your random number

that zeta is 0. Therefore, mean value of Z a measure will be is equal to the mean value of

Z I mean this thing Z true right.
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So, that is why the probability density function of zeta can be written as is a normal

distribution your probability for probability  expression that is PDF that is probability

density function zeta is equal to one upon sigma root over 2 pi into e to the power minus

your zeta square upon 2 sigma square; this is equation 2. This you know this expression

from your mathematics probability chapter. You know this, this expression is a standard

expression for normal distribution.

Where sigma is equal to you know the standard deviation of the random number and

sigma  square  is  the  variance  of  the  random  number  right.  Now  PDF  zeta  actually

describes the behaviour of the behaviour of zeta right. So, this is a stand we define this

one as a probability density function zeta is equal to this is a normal distribution sorry.

So, now we will go to the next page just hold on.
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So, the plot, just hold on; so the plan your the plot or probability density function that is

PDF zeta, versus zeta is given this is sigma, this is 2 sigma, this is 3 sigma and it is

actually your what you call the normal distribution. The normal distribution, the PDF

zeta versus zeta curve right. And note that sigma the standard deviation provides a way

to model the seriousness of the random measurement error right.

(Refer Slide Time: 12:11)

So,  if  sigma is  large,  the measurement  is  relatively  inaccurate  that  is  a  poor quality

measurement  device.  Because  you  are  standard  division  is  large;  that  means,  the



measurement device is not giving you the best answer right. Be best measurement. So, it

is a poor quality measurement device. Where as a small value of sigma, when sigma is

very low that is standard deviation is very low denotes a small error spread that is a

higher  quality  of  measurement,  higher  quality  measurement  device  right.  Now  the

normal distribution actually is commonly used for modelling measurement errors since it

is the distribution that will result when many factors contribute to the overall error right.

(Refer Slide Time: 12:53)

So, for example, for example, say you consider a maximum likelihood concept; that how

things are. For example, you consider a simple DC circuit right. It has a voltmeter, it is

given like this X true is actually it is a volt, and there is an ammeter also and it is a me

measuring the current we get Z 1 measurement and r 1 is the resistance of the circuit

right.  So,  the  principles  of  maximum likelihood  estimation  is  illustrated  by  using  a

simple DC circuit example and so as shown in figure 6 right. So, this is the voltage it is

the true value we have to estimate this true value of the voltage another taken a simple

circuit phase.

So, it is a voltage source and an ammeter is there when resistance is there in r that is r 1

right. And this is Z 1 measure; actually if this is Z 1 measure means it is the ammeter,

amp ampere. So, Z 1 measure means it will be X true upon x upon r 1 in general right.

Because X is the volt and Z is the current ampere right.
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So, now in this example we used to estimate the value of the voltage source x true using

an ammeter with a error having a known standard deviation. We know the ammeter and

we know the known standard deviation  right.  Now ammeter  gives  a  reading of  Z 1

measure, this is actually giving editing that give Z 1 measure right. So, which is equal to

the sum of the Z 1 true; that is the true current flowing in figure 6; there is a true current

flowing in this figure 6 right. And zeta 1 the error present in Ammeter. This expression

we have seen the Z measure is equal to Z true plus zeta. So, here it will be Z 1 measure

will be is equal to Z 1 true plus zeta 1.

(Refer Slide Time: 14:39)



So, here now we can write that, Z 1 measure is equal to Z 1 true plus zeta 1 this is

equation 3. Therefore, is zeta 1 therefore, zeta 1 is equal to your Z 1 measure minus Z 1

true right. So, because that zeta 1 expression we will use since the mean value of zeta 1

is zero I told you with a no that mean value of Z 1 me; that means, there is equal to zeta 1

true right because this zeta 1 mean value is zero. So, mean value of Z 1 measure is equal

to Z 1 true Z true right.

(Refer Slide Time: 15:23)

These actually allow us to write a probability density function for Z 1 measure as. So, in

this case, we can write then PDF Z 1 measure is equal to 1 upon sigma 1 the standard

deviation is sigma 1 to 2 pi right. It into e to the power actually it was minus your zeta 1

square upon 2 sigma 1 square. But zeta 1 is equal to Z 1 measure minus Z 1 true. So, that

is why it is minus Z 1 measure minus Z 1 true whole square upon 2 sigma 1 square. This

is equation four this is the probability density function for Z 1 measure right. Where

sigma 1 is equal to standard deviation for the random error that is zeta 1.

If we assume that the value of the resistance, r 1, in figure 6 is known, then we can write

right.  We are assuming that that in the figure  6 the resistance of the DC circuit r  1 is

known then we can write.
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That your this term that Z 1, Z true that is your Z true it will be x upon r, because Z is the

ampere  your  ammeter  reading  say,  it  is  ampere  and  x is  the  volt,  so volt  by  your

resistance r so ampere. So, Z actually, Z true is actually x upon r 1, this term is replaced

by x upon r 1. That means, by PDF Z 1 measure is equal to 1 upon sigma 1 root over 2 pi

e to the power minus bracket Z 1 measure minus x upon r 1 whole square upon 2 sigma 1

square this is equation 5 right.

Now, coming back to our definition of a maximum likelihood estimator, we now wish to

find an estimate of x called x x is equal to x est that is x estimator right. That maximizes

the probability there that the observe measurement Z 1 measure would occur right. So,

this is for a just a simple circuit we have taken and this is the probability density function

for Z 1 measure.
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Since we have the probability density function of Z 1 measure, we can write like this the

probability of Z 1 measure is equal to, it is actually Z 1 measure to Z 1 measure plus d Z

1 measure right. That is integration this is a limit.

Then PDF Z 1 measure into d Z 1 measure right. As d Z 1 measure actually tends to 0,

you can write PDF Z 1 measure into d Z 1 measure right. Because d Z 1 measure is a

very small thickness very small one, I suggest you go to the graph and just find out how

things are happening, but from your probability studies you have studied this right. So,

since we have the probability density function like this, then this one actually can be

written as PDF Z 1 measure into d Z 1 measure this is equation 6 right.
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So, the next the maximum likelihood procedure then requires that we will maximize the

value of probability Z 1 measure.

(Refer Slide Time: 18:17)

We have to actually  maximize  this  one,  that  probability  of Z 1 measure we have to

maximize  this  one  right.  So,  nothing  but  you  have  to  maximize  this  one  PDF Z 1

measure right.
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So, therefore, which is function of x; so the maximum likelihood procedure then requires

that we maximize the value of probability of Z 1 measure, which is actually is a function

of x. That is maximize probability of Z 1 measure and it is function of x is equal to

maximize your PDF Z 1 measure into d Z 1 measure right. And that is your equation 7.

(Refer Slide Time: 18:55)

Now, how to maximize this? Things are very simple. One convenient transformation that

can be use at this point is to maximize the natural logarithm of PDF Z 1 measure. Since

maximize the your “ln” that is natural logarithm of PDF Z 1 measure will also maximize



PDF of your Z 1 your what you call measure right. So, when you are try to maximize

PDF of Z 1 measure if you take is natural log logarithm it will be the same thing.

(Refer Slide Time: 19:23)

If it is so then we wish to maximize, wish to find out maximize the natural logarithm of

PDF Z 1 measure right, for which we can find out the true value.

So, if you do so, if you do s o, you take natural log of this equation, of this equation. This

equation you take the natural log right. Then what will happen? That it will be minus l n

sigma 1 root 2 pi my then, minus you are what you call 2 in to l n Z 1 measure minus x y,

x upon r 1 divided by your what you call divided by 2 sigma 1 square right. So, here also

we have written that one, that you are maximize; that means, maximizing PDF function

Z 1 is same thing that maximizing natural log of PDF of Z 1 measure. So, this will be

maximize minus l n sigma 1 root 2 pi and this is minus your Z 1 measure minus x upon r

1 whole square upon 2 sigma 1 square, because we are taken the natural log right.
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Now, since the first term is constant, because this is a constant; if first term is a constant

right. It is a first time is a constant. So, generally maximize means we have to take d d x,

but anyway of 0, d d x of that term is first term is your what you call, it is a constant and

second term a minus sign is there before this before this term a minus sign is there, that

mean maximize this term means minimization of this term actually we will maximize

this term. Because first term is a constant right and a minus sign is there before that.

Therefore,  we can maximize the function in brackets by minimising the second term

since it has a negative coefficient this is negative right.
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Therefore, just hold on. That is your maximize your just hold on let me increase its size.

That is your maximize x minus l n sigma 1 root 2 pi minus Z 1 measure minus x upon r 1

your  what  you call  whole  square  upon  2  sigma whole  square.  It  is  simply  actually

minimise x that is Z 1 measure minus x upon r 1 whole square divided by 2 sigma 1

square this is equation 8. So, minimise x means you will take d d x of this one is equal to

0 right.
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That means the value of x sorry that minimises the right hand term is found by simply

taking the first derivative and settling the your setting the result to zero. That means, d d

x of this one is equal to 2 will come, but 0, 0 both side are right hand side is 0. So, in

generally it will come minus Z 1 measure minus x upon r 1 that is in bracket divided by r

1 sigma 1 square is equal to 0. This is equation 9. Solving this at for if you make that x is

equal to x est right estimated value.

Therefore x is equal to x estimated value will simply r 1 into Z 1 measure, this equation I

have marked as a 9 a. So, for a simple voltmeter or ammeter you are getting the sa same

result like b is equal to i r. Because Z 1 measure is nothing but the i and this is the r 1 and

this is x is nothing but the b right. So here, actually 1 me only 1 meter is there and you

are just trying to find out the true value of the voltage, so it is quiet straight forward

right. But which is simply it is b is equal to i r; so this is you simple one.
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Now, suppose now I  have now we have say two ammeters,  pay in  parallel  and one

resistance is r 1 here one resistance is r 2 here, current measure by ammeter-1 is Z 1

measure and current measured by your ammeter-2 it is your Z 2 measure right. And this

is the true value of the voltage that is v. We have to estimate that true value, and this

ammeter has standard deviation sigma 1 and this ammeter has standard deviation sigma 2

right. 

And that that error for this ammeter it is zeta 1 and for this one it is zeta 2. So, it is

simple parallel circuit two registers are connected in parallel right. And it an across that a

voltage  source  is  there  that  mean  all  three  quantities  are  in  parallel  and  these  two

ammeters  measuring  Z 1 measure  and Z 2 measure  the  current  flowing through the

ammeter right.

So, it is a simple DC circuit, now assume that both r 1 and r 2 are known as before each

meter reading as the sum of the true value and a random error right.
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Now, we know from the same pa procedure Z 1 measure will be is equal to Z 1 true plus

zeta 1 and Z 2 measure will be Z 2 true plus zeta 2. So, this two equation combine we

mark as a equation 10 right where the errors will be represented as independent zero

mean, normally distributed random variables with probability density function.

So, it  is I mean there not a your what you call  influencing one metre reading is not

influencing the other metre reading, that completely independent right.
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So, therefore, PDF zeta 1 we can write, 1 upon sigma 1 root over 2 pi x e to the power

minus sigma 1 square upon 2 sigma 1 square zeta 1 square upon 2 sigma 1 square. So,

zeta 1 is Z 1 measured minus your Z 1 true value. 

Similarly PDF zeta 2 is equal to 1 upon sigma 2 root over 2 pi e to the power minus zeta

2 square upon 2 sigma 2 square. So, zeta 2 is nothing, but z measure to minus your what

you call that your Z true value divided by your 2 what that will zeta 2 and divided by 2

sigma 2 square right. This is this equation combining equation 11 right and as before we

can write the probability density function of Z 1 measure and Z 2 measure.
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So, in this case, if we do so, so PDF Z, PDF Z 1 measure is equal to 1 upon sigma 1 root

2 pi e to the power minus of Z 1 measure minus x upon r 1 whole square divided by 2

sigma whole square, is same as before that your Z 1 measure minus  Z true and Z 2 is

equal to it is a parallel circuit. So, Z 1 true will be x upon r 1 similarity it is a parallel

circuit that Z 2 will be x upon r 2 right.

 That is why, this PDF Z 1 measure is equal to  1 upon sigma 1 root over 2 pi e to the

power minus of Z 1 measure minus x upon r 1 whole square upon 2 sigma whole square

right. Similarly PDF Z 2 measure will be 1 upon sigma 2 root over 2 pi e to the power

minus in bracket  Z 2 measure minus x upon r  2 whole square upon 2 sigma 2 square.

This is  equation  this  two equation  is  combined  equation  12 right.  Now we have to

maximize the probability of Z 1 measure and Z 2 measure right.
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Now, the likelihood function must be the probability of obtaining the measurements Z 1

measure and Z 2 measure right. Therefore, since we are assuming that the random errors

zeta  1 and zeta  2 are independent  random variables  the probability  of obtaining Z 1

measure and Z 2 measure is simply the product of the probability obtaining probability

of obtaining Z 1 measure and the probability of obtaining Z 2 measure right. That means,

probability of Z 1 measure and Z 2 measure is equal to probability of Z 1 measure into

probability of Z 2 measure.
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Because these two are independent, is equal to we can write that earlier we have seen

probability of z measure is equal to in general PDF Z measure into d Z 1 measure. So,

this one you can write PDF Z 1 measure d Z 1 measure into PDF Z 2 measure into d Z 2

measure right.  Or we can right PDF Z 1 measure into PDF  Z 2 measure then, d Z 1

measure into d Z 2 measure right. So, just let me reduce this volume little bit right. now

this ok; sorry area.

So, just hold on. So, this one; that means, if you write if you write like this, then these

two we can write that if you substitute the PDF Z 1 measure  and PDF Z 2 measure

expense your what you call expression. Then it will you will get 1 upon sigma root 2 pi e

to the power minus Z 1 measure minus x upon r 1 whole square upon 2 sigma 1 square

into 1 upon sigma 2 root 2 pi e to the power minus Z 2 measure minus x upon r 2 whole

square upon 2 sigma 2 square into d Z 1 measure d Z 2 measure that is equation 13.

Actually  here  also  what  will  do,  that  we  got  this  expression  right.  So,  we  have  to

maximize the probability then ultimately what we have to do is we have to maximize the

actually a your what you call PDF your Z 1 measure into PDF Z 2 measure. These two

we have to maximize again we have to take the natural logarithm of this. I told you that

maximizing the PDF function here is nothing but the maximizing of the logarithm your

natural logarithm will take and that same function the l n function right.

Thank you very much we will be back again.


