
Digital Electronic Circuits
Prof. Goutam Saha

Department of E & EC Engineering
Indian Institute of Technology, Kharagpur

Lecture – 29
Error Detection and Correction Code

Hello everybody, in today’s class we shall discuss Error Detection and Correction Code.

In the last class we saw unweighted code, and we continue with the discussion of codes

which are not weighted. And here, we shall see the code what that is generated is useful

for detecting any error in the bit position. And if possible correction will be done for

some specific kind of coding.

So, we shall discuss hamming distance. And while discussing it we will also shall

include discussion on parity code that we have seen before; even parity and odd parity.

And then we shall look at a specific code called hamming code its generation and how it

is used for 1-bit error correction and 2-bit error detection.

(Refer Slide Time: 01:12)

So, first we look at what is hamming distance. So, hamming distance is the number of bit

positions by which code words differ from one another, ok. If there is one code word and

there is another code word, we look at the bit positions where they differ. And how we

can get it? We can take bit wise Ex-OR operation of it, ok. So, whenever the bits are of

same value; I mean code words is particular position so if it is 1 1 or 0 0 Ex-OR gate

output will be 0, and when they differ that is 1 0 or 0 1 the output will be 1.

So, these Ex-OR bank of Ex-OR gates we look at its output and see how many places it

is work. So, if those ones we count then that will give us the distance between two 1s,

two code words, ok. So, that is what we say as hamming distance, ok.

So, two again group of binary digits and another digit this is the way we can calculate the

distance, ok. So, we have seen parity coding, so let us look at an example of even parity

coding. And there we look at two data: one is some random data we are talking about,

that we shall look at some specific data to find out some minimum distance or so, ok.

So, this has got 1 2 3 4 4 1. So, even parity we are looking at, so the parity bit that is

getting generated will be 0. Ultimately all the bits including the parity bit will be even, so

that is the objective, right. And another data is this it has got 5 1, so the parity bit is 1

after Ex-ORing, right. So, we refer to that discussion on parity code where Ex-OR gates

were used for generation and detection of parity; parity bit parity code related error in the

transmission reception, ok.

So, eventually we have got six 1s over here. So, if you look at bit wise Ex-ORing of this

two, so we shall see that here is 1 1 four 1s are here another one, so six 1s are there. So,

we say between these two the distance is 6, ok. So, that is how we calculate the distance

hamming distance between these two code words, ok. But for even parity code. So, if

you look at another case say where the original data is differing only in 1-bit position.

So, this is one case all 0s right. And just 1-bit is changing, so it has become one, right.

So, what will be the corresponding code word; here all 0 so that means the parity beat

will be 0. And 1 1, so parity beat becomes 1 so that even number of ones is there finally

including the parity bit, right.

So, now, this is the minimum distance between to start with. Now when we do the Ex-

ORing and accumulate we see that two 1s are there. So, this is 2. So, for this kind of

parity coding where 1-bit parity code is introduced we shall see the minimum distance is

of 2, right. So, that is what we taken out of.

 Now the rules is to detect b bit errors number of you know bits if b, then the hamming

minimum hamming distance is required is b plus 1; in the code words, So, we take a d

code words generated for detecting the this error, so error detection code. So, the

minimum distance required is b plus 1. So, hamming distance for this parity coding the

kind of parity coding we have seen before is 2; minimum hamming distance 2. So, we

can correct 1, 1 we can detect rather 1-bit error, ok. And for correcting b bit errors what

is the minimum hamming distance required the rules says; it is 2 b plus 1, right.

So, to correct even 1-bit error we need the hamming distance 2 into 1 plus 1. So, 3, right.

So, with this kind of coding we can detect 1-bit error, but we cannot correct any, right.

So, this is what we have seen in the past on a error detection code using parity;

introducing a parity bit, ok. Here we have taken the example even parity, it will stand

good for odd parity also, right.

Yes.

(Refer Slide Time: 06:20)

Now, we look at another kind of coding call hamming code, where we shall see how to

correct a bit error as well. Not only detection is what we have seen as an example in

parity code, ok. So, hamming code is something where we are putting not 1 parity bit

more than 1 parity bit at specific positions. So, what are those specific positions? These

are 2 to the power i-th position. So, what are the 2 to the power i-th position? So, 2 to the

power 0 is 1, 2 to the power 1 is 2, 2 to the power 2 is 4, 2 to the power 3 is 8. So, these

are (Refer Time: 07:05) by 2 to the power i-th position, ok

So, if we have a total code word, total code word that includes this parity bits which are

included for the coding purpose and the data where which contains the information or the

message or the numeric value whatever, right. So, if we include all of them together then,

whatever code word is found the 2 to the power 0 that is 1, that is first position 2 to the

power 1 2, 2 to the power 2 4; then 2 to the power 3 8. So, these positions will be filled

by parity bit, ok.

And the rest of the position will be filled by the data like 3rd position, 5th position, 6th

position, 7th position, ok. So, this is the way count will prove this. So, with P 1, P 2, P P

4 these 3 parity bits we can go up to D 7; right that means, total code word will be 7 4

data bit and 3 parity bit will be required in this kind of coding. So, whenever we go

beyond that we have to introduce a parity bit over here P 8, so with that we can go up to

D 15. And here whenever 16 position comes, right we have to introduce a parity bit D 16

and then again D 17, D 18 will continue. So, this is the way things are done in this kind

of coding. Is it clear,

So, with this we can understand that with n parity bits, m greater than equal to 2 the

number of bits that we can code message bits or data bit is n, then 2 to the power m 2 to

the power m need to be greater than m plus n, ok. So, that is what we can see. Here 4

parity bits are there P 1, P 2, P 4, P 8, so m m is 4. So, 2 to the power 4 is 16, right 16 it

need to be greater than m which is 4 plus n. So, here n we can go up to data we can go up

to 11. So, 15. So, you see up to 15, because at 16 position another parity bit will come.

So, this is what we can see over here. Is it clear how are how we are introducing the

parity bits in the code word hamming code? Fine.

(Refer Slide Time: 09:46)

So, you know the position of the parity bit alright, now how we generate the parity bit.

So, the values will be 0s and 1s, ok. So, what will be those 0s and 1s, of course it will

depend on the data, right. So, how it is generated? So, to generate parity bit for a system

which is called hamming 7 4 code, that means total length is 7 and number of data is 4:

D 3, D 5, D 6, D 7 and number of parity bits are 3; P 1, P 2, and P 4, ok. So, we will take

these example.

So, what we do first? Each of this position 1 to 7 we are coding in binary, right. So 1, its

binary coding is 0 0 0 1; 2 binary coding is 0 0 1 0 alright. So, this will continue 7 is 0 1

1 1. So, to generate P 1 to generate P 1 we shall consider all the positions of the data

where the units in the units in the units case there is a 1; is it fine. So, D 3, D 5, D 7 so

these are the places we have a one in the unit place. So, P 1 will be generated by Ex-

ORing these beats; whatever these bits whatever message you are having. So, these are

the places whatever the bits are there, we Ex-OR all of them together and then you get P

1.

So, how to get P 2? P 2 will be obtained by looking at ones that are present in the 2 place.

So, this is all P 2 will be generated, so it is not coming. So, D 3 right, then D 6 and D 7.

They have got one in the twos place, so D 3, D 6, D 7. You can see that and how P 4 will

be generate now you can understand you can extend the idea. So, we shall look at 1s

present in the 4th place, right. So, 4th place 1 present here in D 5, then D 6, and D 7. So,

that is what you can see. Is it ok?

So, if you extend it if you extend it you can see for example, if you are having total code

word is code length is 12 code word length is 12 right, and P 1, P 2, P 4, P 8; so 4 parity

bits are there and then 8 data bits are there. So, if you want to code it, then the parity bit

need to be generated. So, P 1 again you look at places where there is 1 in the units place,

so P 1 you are generating. So, D 3, D 5, D 7, D 9, D 11 this is there, right.

Similarly, P 2 similarly P 2 we will look at places where there are 2 right, so D 3, D 6, D

7 already there you can see that D 10, and D 11 these 2 they join in P 2 generation when

there are 12 bits 12 bit code word. So, P 4, P 4, D 5, D 6, D 7 was already there D 5, D 6,

D 7 up to this then in 4th place you can see over here the D 12 has got a 1, ok. So, D 12

will come. And finally, for P 8 in the 8s place where there is 1. So, P 8, D 9, D 10, D 11,

and D 12, ok. Is it clear now?

Now, you can see if you put various numbers and all, so the minimum distance that you

can get over here is 3 between 2 code words. And for which it can detect as I said it was

b plus 1, so b will be 2 and can correct which was 2 b plus 1, so this is 1. So, this is what

it can do, ok. And of course, what you can understand by doing this we are actually

increasing the length of the message, right length of the data. So, actually out of which

useful data is 8; 8 is something which is unknown and P is the one that you are

introducing. So, at the other end; so 8 out of 12 will be useful in this kind of coding and

in the 7 4 code 4 data bit out of 7 will be useful. So, this is the way one can actually

define the rate at which actually information is going from one place to another.

So, because of the introduction with the this parity bit you can see actual rate though you

are sending 7 bits, but your message conveying bit is only 4. So, rate has been reduced.

So, this is one thing that we need to take into account that when we are doing it to get

some benefit out of this kind of you know methodology there is some cost associated this

cost is additional bit. So, that need to be sent along with which will bring down effective

data rate; effective transmission rate, fine.

(Refer Slide Time: 15:36)

Now, let us look at one example, ok. So, in this case the data is 1 0 1 1 and 0 1 0 1. So,

basically 8 data bits are there. So, 4 parity bits will be required. So, data bits are placed D

3 and D 5, D 6, D 7, D 9, D 10, D 11, D 12,, right. So, this is the way they are defined.

So, this is D 3, D 5 up to this is D 12, but that start your. So, you know that the

nomenclature how this they are designated.

So, to get P 1, so D 3, D 5, D 6, D 7, this is D 9, D 10, D 11, and this is D 12. So, D 3, D

5 D 7, D 9 D 11 this you need to take. So, D 3 is 1, D 5 is 0, D 7 is 1, D 9 is 0, and D 11

is 0, right. This is the way you look at it. Ex-ORing means we shall look at the number of

1s. So, if the number of ones at even, you have to invigilate the number of 1s total

number of ones are odd then the output will be 1. So, number of 1s are even in this

particular Ex-ORing. So, the output here is 0. Is it clear.

Similarly, for P 2, D 3, D 6, D 7, so you can substitute all those values we can see that

this is 0 P 4. Similarly we can see here there are 3 walls D 5, D 6, D 7, D 12. So, D 5 is 0

over here, D 6, D 7; D 6, D 7 are 1 1, 1 1 and D 12 D 12 is 1, ok. So, three 1s are there,

so the output is 1. And finally, P 8 you can say that this is 0, right.

So, then the coded data will look like this 0 0 because P 1 is 0, P 2 is 0, P 4 is 1. So, P 4 is

coming over here D 3 is 1, so D 3 is there. So, D 1 that are in bold is the parity bit, ok.

So, this is the way the coded data will be generated and to be sent, ok.

(Refer Slide Time: 18:03)

Now let us see how the corrections called 1-bit error correction that is possible through

this hamming code, ok. So, if we just look at the way it is generated, so for example if

we consider that in this particular case D 7 bit is received erroneously, ok. Just for

example; actual example we shall see later. So, D 7 bit is generated received erroneously.

So, whatever was there it has been flipped, ok. So, what we do, in the receiver side other

than what was required to generate the parity bits D 3, D 5 D 7, D 9 the 1s position with

them we also Ex-OR the P 1; is it ok.

So, if all these where odd if all these where odd D 3 to D 11 then P 1 would have been 1

or I mean the number of 1s there that was odd. So, together it it would have been even; is

it clear. So, if we include P 1 in the Ex-ORing process the way you had done for you

know single bit parity code, ok. So, inclusion of P 1 in the receiving side in the Ex-OR

operation would have made everything even the whole of it is even. So, if this was not

erroneous then these Ex-OR operation together with P 1 would give me 0. So, if all of

them together was 0 then P 1 would have been 0 which is the case in in a specific

example or if it was 1 it was. So, effectively all of them becomes even parity, right.

So, D 7, if not erroneous this C 1 generated will be 0. But if D 7 is erroneous it will

generate because of it has thick, so odd number of 1 will come there, so C 1-bit will

become 1, right. D 7 let us see what else which other area where it where it is there. So,

C D 7 is over here again, D 7 is over here again and it is not there with C 8, right.

So, D 7 flipping will not affect C 8, right. So, if you now put them together; I mean if

you take the receiving side so what will it generate; C 8, C 4, C 2, C 1 it will generate 0 1

11 from this side to this side. And this refers to 7th 0 1 1 1 is 7, ok. So, that indicates that

7 bit is erroneously received. And if you invert it you will get the actual information,

right. So, this is how 1-bit error correction is done. So, it will be true for any other bit

position. If you will see that only corresponding place over here is getting you know flip

a getting a 1, because of the flipping over here, ok.

So, the example that we are taking the code word, right we can say a for a change not say

D 7; D 7 is already understood that 11 position the bit has changed bit has flipped. So,

this 0 has become 1, right So, we shall then perform with the parity bit that is there

wherever D 11 is present, D 11 is present D 11 is present here, right. So the D 11, D 11 is

present here, and D 11 is present here. So, these where the places which was 0 before in

the generation process, now this has become 1, and parity bits bit got added, ok. So, it is

not there with this one D 11 is not there.

Now if you do the Ex-ORing operation you can see 1 1 1; three 1s are there. So, output

will be 1. This is your P 2, this is your P 4 right, this is your P 1, this is P 2, this is P 4,

and this is P 8, so this is 1 this is 1. In this case four 1s because of presence of you know

this P 4 this three 1s it finally it will become 0 and because of this three 1s are there this

is 1. So, what we get: 1 0 1 1 C 8 to C 8, C 4, C 2, C 1. So, this is what we are getting.

So, this indicates 11 in decimal. So, 11 position there is error and if you flip it in you can

get the corrected bit well, ok.

And note that the flipping can occur even in the parity bit position, because when the

message is coming you know do not know because of the noise or some issue which bit

position has it. It is not no lesser down to the data bits will get you know for uptake, ok.

So, if say any of the parity bit is getting corrupted it say; P 4 is getting corrupted, ok. So,

P 4 is getting corrupted means P 4 is there in the sorry; let us consider that P 8 is getting

corrupted. So, P 8 is there with this one only this particular case P 8 is not there in any

other places. So, only because of it has changed it will should have been you know even

parity whole of this thing. So, these output would have been 0. Now this output will be

showing 1 C 8. And since P 4 is P 8 is not there with anyone of them right, so all of them

will be showing 0 because they are not getting affected all those bits are in order.

So, 1 0 0 0 is that what you will get and the final you can say that 8th position is

erroneous, ok. Is it clear? So, if it is 8 position then P 8 is erroneous; P 8 is erroneous.

(Refer Slide Time: 24:37)

Now let us look at 2-bit error detection that is possible here, ok. So, let us see how what

does it mean. So, we consider a case where this D 7 is erroneous and D 5 is also

erroneous, ok

So, what will happen in this case: C 1 is 2-bits have flipped. So, C 1 will be 0 only right,

if 1-bit flips then it will give a 1 in when you consider the parity bit and all overall it is

even parity. Since 2-bit has been flipped, so it will be giving you 0. So, you cannot detect

any error over there, ok. So, here D 5 is not there, so D 7. So, in this case this will give a

1 because only 1-bit has flipped D 5, D 6, D 5, D 7 is there in C 4. So, 2-bits have

flipped, so it will not detect any error. And C 8 does not have D 5 or D 7,so it will not

detected anything.

So, only C 2 will give you a indication that there is a error. But it it is no it cannot correct

it because it is indicating 2, ok. if only 1-bit error was there, right to there you could have

seen that it is P 2 that has been erroneous, ok. So, what that is not the case here, so more

than 1-bit correction means not possible so D 5 D 7 cannot be corrected, right.

So, similarly D 3 and D 5 if you see, so D 3, D 5 both flipped so that means it will this

will be 0 it cannot detect anything, so 0. And D 3 is here D 5 is not present D 5 is here D

3 is not present, so there they will generate 11. And you are in this C 8 is in either of D 3

or D 5 are there, so this will be 0, ok. So, this again because of C 2, C 8 2 C 1 is not all 0,

so a error is detected, error is detected, ok. So, if there are 2-bits erroneous definitely we

can see that the it will be detected. So, the final C 0 C 8 to C 1 will not be all 0, right.

Now more than 2-bit flipping let us see 3 bits case. So, we take an example where D 3, D

5, D 7 they have flipped, ok; which is possible this is one random case, right. So, C 1 3 3

f has changed. So, for which then if 2 then one cancels other, so basically 2. So, here

then it will detect a odd parity not even parity, so this will be 1, right the other case D 3

and D 7. So, it will detect both of them is you know flipped, so no error will be detected

similarly no error will be detected. And in this case D 3, D 5, D 7 are not there, so 0 0 0

1.

So, error is detected. So, 3 bit error is detected, ok. But we were saying that it can detect

2-bit error. So, 2-bit error detection is guaranteed, 3 bit error in this case detect got

detected, ok. But let us see another example whether it is getting detected or not.

So, D 3, D 5 and D 6 let let us consider that this 3 bits have got corrupted have got

flipped, ok. So, D 3, D 5 is there in C 1 0 ratio. So, since 2-bits have got flipped, so it

will not be detecting it will be 0. D 3 D 6 is over here, 2-bits got flip it will be 0. D 4 D 6

is over here 2-bits got got flipped it will be 0. And in this case none of the D 3, D 5, D 6

are there, so it will be generating 0. So, 3 bits are erroneous, but the output is 0, so it will

be seen as that no bits no error is there in the code word, ok. So, that is why you are

saying that it can detect 2-bit, error and can correct 1-bit.

So, this is the basic premise of error detection and error correction, and with hamming

distance, and the relation between hamming distance, and the number of bits it can detect

and number of bits it can correct, ok. And there are many other options available. So, the

idea here was to give you an idea or foundation and how digital circuits can be made

around it. And we have seen that this Ex-OR gates Ex-OR relations are useful in this.

(Refer Slide Time: 29:28)

So to conclude: we can see that the number of bit positions by which the code words

differ called is called hamming distance and the hamming with distance is related to

number of bits it can detect as erroneous or number of bit it can correct as erroneous; I

mean erroneous bit it can correct, ok. And in hamming code generation: 2 to the power

ith position we need to be need to have parity. And Ex-OR operation is there for

generating the parity bit as well as looking at the receiver side. And from that we can

arrive at the for the correction bit position and for detection whether there is a error or

not, ok.

Thank you.

