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Unweighted Code

Hello everybody. In today’s class we shall discuss Unweighted Code.

(Refer Slide Time: 00:25)

So, we have seen binary coded number and we have seen that the weights associated

with binary code is 1, 2, 4, 8, 16, so on and so forth before the binary point and half, 1

upon 4, 1 upon 8 etcetera after the binary point. We shall, we see these are we shall look

into what is the need of having unweighted code. Then we shall discuss two important

such codes gray code and excess 3 code and also we shall discuss ASCII code. 



(Refer Slide Time: 01:01)

So, if you remember the quick the visit of the binary code. So, for visit numbers B 3, B

2, B 1 and B naught ok. So, with that with the binary code this formula you remember

the corresponding values. So, for any number with base or redix r so this is the digits and

this is the corresponding value. So, if we consider this number 1010 and if it is 8421

code  normal  you  know  2  to  the  power  0  etcetera  this  way,  the  standard  way  of

associating weight in the value will be for this one 8 will come, and for this one 2 will

come, ok. So, 8 plus 2, 10 will be there.

So, there can be other kind of weighted code where this is not exactly like this r to the

power a, r to the power n, in the way it is increasing the integer power is increasing

based on the position, ok. So, there can be other way of putting weights. For example, if

it is a 2421 code. So, the first position is associated with the digit will be having a code

weight of 1, second position 2, third position 4, and the fourth position is having a weight

of 2. So, that is for 2421 code. So, that is also a weighted code because weight associated

these 2. It is not 2 to the power 3 8 that we see for 8421 code, ok.

And 1010 if we are using 2421 code, what will be the value? So, the one in the; this

place the 3 place will be having value 2, and then there is a 0, then there is a 2 for this

particular one and then there is a 0. So, 2 plus 2 the value will be corresponding this the

equivalent will be that of 4 for this 2421 code in 1010 representation, ok. This part we

understand, I mean regarding weighted code.



Now, what could be the issue with weighted code for which we might need to look into

different  form of unweighted code,  ok.  So, one of the issue that you can see in this

particular case. So, when we are changing the number from 0 to 1 to 2, so this is your 1,

this  is  your  2,  then  3,  4  so  on  and so  forth  the  decimal  equivalent  the  consecutive

increase in the number. So, from 1 to 2 you can see that 2 digits are changing, 0 1 it is

becoming 1 0, ok.

So, from 3 to 4 you can see 3 digits are changing 1 1 is becoming 1 0 0, ok. So, what

could be issue with that? So, this is the way the weighted code you know is 4 2 1 code

the why we have seen it is you know is there. So, let us see one possible you know issue

with such kind of now coding.

Consider there is a conveyer belt B 1 that you see here, over which some material is

there and the conveyer belt is moving in this direction, right direction as has been shown

with the arrow, ok. So, it is moving from zone 1 to zone 2, for the where some activities

are taking place and the conveyer is goes is suppose to go in this direction, right. And if

you are sending a binary code of the zone where the this particular material is lying at a

given time to a control unit, through a mode of you know digital transmission of data.

So, from zone 1 0 0 1 it is going to 0 1 0, that is the way it will be kind of you know

shown in that control room, right.

Now, from 001 to 010 since these two digits  are changing, it  so happens because of

various you know delay our elements associated with the bit positions and the changing

of the value the coding of the value and its transmission, there this 1 is changing, when

this 0 has not yet changed. So, 1 this 1 is changing faster than the 0 that is suppose to

change to 1. They are not exactly you know changing in the same time, and after that it is

going to 010 of course, after some delay.

So, at some point of time the 001, after that 000 will come and that will make an in

interpretation that the it has moved from zone 1 to zone 0, when it is suppose to go to

from zone 1 to zone 2, is not it. So, basically the conveyer belt is moving in the it was

duration. So, that might cause or that might cause some alarm or emergency some issues,

with  this  you know particular  thing.  So,  if  you would  prefer  in  such a  scenario  for

consecutive numbers that only 1-bit you know if it is possible to make change, ok. So,

that gives rise to what we call gray code.
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So,  in  gray code two consecutive  numbers  are  do differ  by only 1.  So,  the distance

between two numbers in terms of the positions in the is only 1, ok. So, if we look at

example of some such some you know gray code from the initial values are 0 to 10, the

way we had seen for binary code. So, these are the corresponding equivalent 0, 1, 2, 3,

the consecutive number we already know 5, 6, 7, 8, 9 and this is 10, right.

Now, corresponding gray code if you see 0 is 0, right there is no ambiguity about that, 1

is 0 0 0 1 absolutely no issue because only 1-bit is changing, right. Now, here when it

comes to it is 1 0, 2 bits are changing here it is 1 1, ok. From 2 to 3 this is 1 0 this is 1 1,

from this 1 1 now only 1-bit can change. So, this 1 1 is now 1 0, right. So, is there any

rule by which we can get you know this number from you know binary to gray or you

know some sort of way the number can be generated, not juristically.

So, one such method, one such method is through reflection. So, how is it that? How is it

let us see. So, first 0 and 1 we have no issue, two numbers 0 and are 1 is getting you

know represented in binary as well as gray. So, this is this 0 1 you reflect, like this is a

mirror, so this is 1, this one is getting reflected and this is a 0.

Now, some additional bits are required because the number you know the count we are

trying to increase. So, you put 0 0, 0 in the first two and 1 in second; so, 0 0 0 1 1 1 and 1

0. So, that gives you 0 1 2 3. You can see over here you the first thing. So, first 4 number

is obtained.



Now, to get next 4 numbers what we shall we do? Again, we will do the deflection. Now,

we shall take this 2 digits together, so 0 0, 0 1, 1 1 and 1 0. So, if we reflect, so 1 0 is

reflected here 1 1 is reflected here 0 1 is reflected here and 0 0 is reflected here, ok. So,

again we shall put 0s here and 1s here. So, by which the third digit comes into play, so

that will give us 8 such consecutive numbers. 

And similarly, we can go for this 8 will be represented here, so that gets reflected that

like 100 is reflected here 101 is reflected here and then we will put to place the 4th digit

here first block 0 and second block one we shall get the consecutive numbers. So, this

that is the way we can get it and we can see that the gray code is formed, ok. So, the I

mean generalized at by reflecting n minus 1-bit gray code we can get in the gray code,

ok. So, this is one way of getting the gray code, right.

So, gray code in 10 is 1010 this is 1111. Of course, you can understand that this is not a

weighted code, ok. If you as try to at associate some weight a like 8421 2421 any other

weight  you see  that  it  is  it  is  not  working,  ok.  But  good thing  about  it  is  that  the

consecutive numbers are only increasing by 1-bit, so there is no ambiguity of you know

one of the number one of the bit is changing slower than the other resulting in some you

know interpretation of a different number coming in between, right.

(Refer Slide Time: 10:30)

So, if we have a situation where the input is binary digit and the output is gray code I

mean that is what is required and then how we go about it, how we can get a the codes



converted and also vice versa. I mean we have gray code we want a binary code, right for

some reason, for some you know application. So, to do that if we look at the you know

the mapping the we can come up with a very simple relationship where the nth bit most

significant bit, right, if it is a n you know digit conversion that we are looking at that

mean the gray code of that at the B n will be exactly the same, ok.

So, here if we take this 4-bit example; so, B 3 and G 3, so G 3 will be same as B 3, right.

And for other values, G i is B i plus 1 exert with B i, ok. So, what does it mean? So, B 3

straight away goes as G 3, so G 2, ok, so the next gray code is B i plus 1 this is 2. So, B 3

exert with B 2, ok. Then we shall get this one. B 1 is B 2 exert with B 1 I mean same way

B 1 and as G 1 we get B 2 exert with B 1, G naught we will get B 1 exert with B. So, if

you just put it into the form of a you know bank of example you can get it in this manner.

You can see that whether this is working for example, if you say first case, so all 0, right,

so 0 comes over here, right, so the 0 0 0 0. So, say this is 0, 0 0 exert is 0, 0 0 exert is 0, 0

0 exert is 0 summation, right.

So, next one is 0 0 0 1, you can see 0 0 is 0. I mean 0 comes here this 0, the next one is 0

0 exert 0, next one is also 0 and 0 1 exert is 1, ok. Now, comes when there is a difference.

So, bit binary code is 0 0 1 0, right. What is happening now? So, we get 0 0 1, let us see.

So, 0 comes over as 0 directly 0 0 exert is 0, now 0 1 exert is 1 and 1 0 exert is 1, that we

can that way you can verify rest of the numbers and we will see that such a simple circuit

equal, as a good converter.

Now, for gray code to binary code conversion; so if you look at the reverse way the

mapping is done we can see that G 3 can directly go as B 3 and G second B like B 2 can

be generated by exerting G 3 and G 2 and B 1 can be exe obtained by exerting B 2 the

output that has been generated, using with G 1, right an G 1 exert with G naught you can

get B naught, ok. So, we can again put those values and can see this is the way simply

you can get the binary code generated from the gray code, ok. 
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Now, we come to another kind of you know code which is called Excess-3 code. So, here

we are trying to represent BCD numbers binary coded decimals. So, 0 to 9 these are the

you know 10 numbers. So, in binary coded decimal we have 0000 to 1001, ok. So, in

excess-3 code what are doing, this 0 to 9 is represented by 0011 to 1100; that means,

whatever is the binary code add to that 0011 we get excess-3 code. Why? Why are you

doing this? I mean what is the benefit out of it will be cleared very soon, ok, we shall

discuss that part.

So, first we see that how it is represented; so this is the way it is represented. So, if we

are representing a number 5 3 in BCD code it will be 0101 for 5 and 3 0011 is not it, but

in excess-3 code this will be at 3 0011, so this is 1000 and this is 0110. So, you can see

that 5 is 1000 and 3 is 0110, right 5 and 3, ok.

So, similarly 6.9 if you want to represent again 6 is here you can see 1001, right and 9

here is 1100, ok. So, this is the way I mean the representation is there and this is for

many other cases we can see for example, if you want to represent 487. So, 4 is 0111 in

excess-3 8 is 1011 and 7 is 1010. So, this is the way the number will be represented, ok.

So, this is coming in computation with you know BCD code, and accordingly we shall

see the benefit, in subsequent slides.

And regarding code conversion; so how to convert from one form to another? So, one

approach could be the case where each of this X, XS-3 code. So, if I say if I represent



them as X 3, X 2, X 1 and X naught, right we can form a form a have a truth table where

this is X 3. What is the value of X 3 for different representation now? B 3, B 2, B 1 and

B naught, right. And the numbers that are not there like one 10 to 15, right, 1010 at the

input site 1111, so those are the do not care cases, ok. 

We do not care about what will be the value, right. So, with that we can have a you know

minimization process Karnaugh Map QM or Boolean algebra by which we can get the

value of X 3 then we can get X 2, and get X 1, and X naught as a function of B 3, B 2, B

1 and B naught and you can realize it. So, this is one way of you know getting it.

The other one could be just having a 4-bit adder, right, a 4-bit adder by which you can

add and get it and the reverse process, reverse process means from XS-3 to binary. So,

we shall have B 3, right. We shall see how it is it can be represented as a function of X 3,

X 2, X 1 and X naught for different values, again we shall consider do not care we get

this (Refer Time: 17:58) and realized after minimization or we shall add a subtract by

which are subtracting 0 0 1 1 from the excess-3 count we shall get back the binary code,

ok. 
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So, the benefit we shall ss you will see over here, ok. So, compared to BCD arithmetic

you shall  we will  see that  excess-3 arithmetic  is  simpler, ok.  So, let  us see how the

arithmetic is done. So, if you are looking at addition of say two numbers for which the no

carry is produced, no carry is produced, right. What is the implication of it? So, let us



consider two numbers 5 and 2. So, corresponding representation is 5 is 1000 in XS-3 and

2 is 0101 in XS 3, because 3 get added with normal the binary coding, right. So, if you

add if you add, so this is 1, this is 0, this is 1 and this is 1. So, no carry is produced here

of course, no carry is produced, so we shall look at example where carry is produced.

So, no carry is produced, so this representation 1101, right this is a you know valid XS-3

code, right and this the valid you know number I mean valid number in the sense the

number which is which does not produce any carry, right but within it has 2 additional

3s, 2 additional 3s that goes inside it, ok, one from here another from here compared to

binary coding. So, basically what you get here is XS 6, the binary coded number plus

0011 coming here as 0011 coming from here. 

So, if you want to get the XS-3 version of the result which is our intention, what we need

to do? We need to subtract it subtract 3 from it, right because it is XS 3, if you subtract 3

we will get XS 3. So, the result will be if you subtract from here you get 1101 subtracted

with by 3 we get 1010, ok. So, this 1010 is the XS-3 version of XS-3 of the number 7

that we see as corresponding decimal equivalent is that clear, right.

So, we no carry is  produced the resulting number, resulting number is  a valid  XS 6

number, ok. To get XS-3 we have to subtract 3 from it and that is how it will it is to

work, ok. And carry is not produced up to what? Up to 1111, when this result is there in

XS 6. So, that is your in its binary it is 1001, and that is your 9 decimal that is 1100 in

XS 3, right is it clear. And when it goes beyond 9 go, right and these addition becomes

more than you know 1111. So, the carry it is produced, ok. So, that is the you know in

the binary coded decimal cases more than 9 basically we are getting cared, right. So, if

look at another example where carry is getting produced. So, 5 and 7, so this is 12. So, 5

is 1010 and 7 is 1010, I will reduce to 1000, 1010. So, if you add them up we get 1 and

0010, ok.

So, how do we go about it? So, in these case when carry is produced. So, this is 0010 you

just fine with you know normal kind of cases, but XS-3 we have to add 3 with 8, you

have to add 3 with it. So, 0101 will be the case here and for this one if you are using this

or another BCD addition another XS-3 addition another. So, the digit is there. So, this is

will go as a carry otherwise if it is the end of it then we shall put a put it in the 4-bit; that

means, which is getting added with 3 basically, so that is one and the 0 0 will coming



will come over here, that is the XS-3 version XS-3 representation of 1, that is 0100,

right. So, this is the way it is it be represented.

So, in what is he that in one, case one is getting added another sorry 3 is getting added in

this case then 3 is getting subtracted over here. So, you just need to see whether the carry

is present or not accordingly the number 3 which remains constant which that will be

either getting added or we get subtracted. So, that is that is going to help us in addition

subtraction add or subtracted circuit for XS-3 in comparison to BCD add or subtractor

that that we have developed before, ok.

So, if you are looking for you know addition of 2 you know addition of numbers decimal

numbers with 2 digits. So, these are the, this is an example, so 25 is added with 57, so 25,

2 and 5, and 5 and 7 they are represented in XS 3. So, this is the addition result, ok. So,

in that addition result here carry one is generated, ok. So, when carry one is generated

what we have to do? For this particular XS-3 digit, of the decimal number we have to

add 3. So, that is what we will get 0101. 

So, 0101 is the decimal representation of 2, ok. And when you add carry over here by

which  what  we  see  the  number  is  1110  and  no  carry  is  produced  here  no  carry  is

produced here.  So,  no carry  is  produced we shall  follow this.  So,  3  needs  to  be  re

subtracted if you subtract 3 from it you get 1011 and this 1011 is decimal equivalent of 8.

So, final result is 82, ok.
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So, XS-3 adder unit. So, XS-3 adder unit. So, the example that which was discussed is

over here in the left-hand side. So, what we do? This is the basic adder 7483 and then

these are the 2 inputs, right. If carry is generated carry is generated what is happening?

This is another adder, ok. So, if carry is generated we shall add this is coming as 0 this

output will be 0. So, 1 1 is getting added, ok, 1 1 is getting added and this is the carry

which might go to the next stage and if it is the end of it then you see this is 0, this is if

carry is generated this will be 1 and this is 0 and this is 0 carry is not there this is 0, ok.

And if no carry is generated, if no carry is generated then what happens? So, this will be

0, so this will be 1 and this is this one is permanently connected and then this is 0, right.

So,  1101,  so  this  is  1,  this  is  1  0  1.  So,  what  is  this?  It  is  the  2s  complement,  2s

complement, this 1101 is 2s complement of 0011, ok. Remember that, right. So, 0011, 1s

complement is 1100 plus 1 is 2s complement which is this. So, we do not need a carry in

over here ladder because it is already there, ok, right. And then we do 2s complement

addition we will get the subtraction that. So, this is the way we can get very simply the

XS-3 adder circuit meant compared to if you remember BCD 3, BCD addition, ok.

(Refer Slide Time: 26:44)

Now, coming to XS-3 subtractor, one good thing about XS-3 number is that if you just in

invert the number, invert the bits immediate bits then you get nice complement, right.

You do  not  need  for  BCD subtractor  if  you remember  we discuss  10s  complement

generated circuit or if we had used 9s complement you know arithmetic we would have a



used 9s complement generator circuit. Here we do not need a elaborate or you now more

complex these 9s complement or 10s complement generator circuit because the inverting

the bits we can get the 9s complement of this, ok.

So, 9s complement subtraction we have already discussed before in a earlier class. So,

we just so the implementation here. So, say 9s complement of 2, right if you look at, so 0

1, 0 1 is in XS 3, right. 0 0 1 0 in binary XS-3 0 0 1 0 1, if you take 9s complement of

these 2 it is 9 minus 2 which is 7, and 7 if you just look at it it is 1, if you 1010 in XS-3

and you just invert the bit here you get the 9s complement, is not it. And what is the

process? If we remember for 9s complement you know best subtraction. 

At 9s complement of B subtract with the minuend if carry result is positive add carry

also add 0 0 1 1 for XS-3 because if you want XS-3 we need to add this one. If no carry

result is negative and we have to subtract X 3 for XS-3 and we get invert the bit we get

the result, ok. So, this particular law by which you know this shows the logic circuit by

which you can get it, right.

So, this is showing this is showing when there is a subtraction. So, there is a inversion

getting done, ok. And this circuit is familiar the BCD these XS-3 adder circuit and here

what you can see if there is no carry if there is no carry result is negative, right and

subtraction is done and inversion of the bit. So, inversion of the bits is happening to get

you the final result, is it ok. So, compare it with other circuit we do not need as I said 10s

complement generator another (Refer Time: 29:22). So, this is why XS-3 is useful and

the of course, it is an unwanted code. 
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And finally, this is ASCII code where whatever we are working in the computer or the

computer is talking to a printer and all. So, in that case the control code control values,

control  codes  and  alpha  numeric  codes  the  print  of  the  characters  etc  these  are  all

generating ASCII code for communication from one place to another. And ASCII code

the full form of it is American Standard Code for Information Interchange, right and this

has been standardized for computer hardware, ok.

There was some other code which EBCDIC, extended binary coded decimal interchange

code which IBM introduced for its device, but this ASCII code is now you will see it is

prevalent and you know people are using it. And it is a 7-bit code, so 128 possible codes

are there, right and if you just look at how things get represented say one of the character,

we type say is capital A, right. So, capital A you can see the in the example. So, these are

the more significant bit bits X 6, X 5, X 4 and these are the your significant bits X 3, X 2,

X 1 and X naught, right. So, 1 0 0 this column and this row if you see 0 0 0 1 coming

from here. It is how capital a is represented.

And how small a is represented? We will see that this is small a. So, between these 2

only one value is changing, this 0 is changing to 1 and rest of the values are remaining

same. So, small a is 1 1 0 this instead of 1 0 0, this is 1 1 0, it is from the values are

remaining same that is your small a. Similarly, between capital B and small b we see that



only  this  place  the  value  is  changed  6th  place,  right,  7th  bit  this  is  the  place  it  is

changing.

Now, how 0? If you type 0, how 0 is represented? So, 0 you can see over here this is 0.

So, 0 1 1 and four 0s, 0 1 1 and four 0s, this is the one, right. How 1 is represented this is

1. So, 0 1 1, 0 three 0s and 1, ok. So, these are the different things. So, out of this say

carry the detail. So, any place center and all; so then what is the corresponding ASCII

code based on which some action is taken? So, carriage return is 0 0 0 1 1 0 1, this list is

not exhausting, right or 120 options are not given. These are mostly these are printable

characters that you can see, ok.
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So, with this we come to the conclusion. The change of more than one digit for two

consecutive numbers in binary code we give problem in certain applications, if one digit

change is slower than the other for which we discussed gray code and we have binary to

gray and gray to binary conversion using Ex-OR gates.

Excess-3 code is the one where 0011 is added to the binary coded decimal and if XS-3

addition and subtraction uses simpler circuit than BCD add or subtract the circuit and it

involves addition or subtraction of 0011 that is 3 in both the cases. And ASCII character,

ASCII  code  is  a  7-bit  code  by  which  control  codes  for  peripherals  and  printable

characters can be generated and exchanged.



Thank you.


