
Digital Electronic Circuits
Prof. Goutam Saha

Department of E and EC Engineering
Indian Institute of Technology, Kharagpur

Lecture-16
Multiplexer: Part I

Hello everybody. We are in week 4 of this particular course in this class and also in the

next class we shall discuss Multiplexer.

(Refer Slide Time: 00:22)

And in this class, we shall cover multiplexer basics and higher how to get a higher order

multiplexer from lower order and its relation to Shanon’s expansion theorem.



(Refer Slide Time: 00:32)

Before that let  us have a quick recap of what we discussed in week 3. We saw that

Karnaugh map is useful for simplification, but when it becomes 5- variable we need a 3D

visualization and more than 4- variable, it is difficult using Karnaugh map and if we use

entered variable map, we the map size reduces by a factor of 2. And QM algorithm, when

we have more  number  of  variables;  QM algorithm is  useful  and we can  generate  a

computer algorithm, a computer based algorithm a code for minimization. And when we

look at various realization of a logic circuit, digital logic circuit we consider certain cost

criteria which could be get input cost total number of literal cost or it total number of you

know gate inputs plus total number of gates that are used. 

So, using those gate criteria we can think of minimizing one particular function and of

various  options  we  can  select  one  particular  option.  And  when  we  have  to  realize

multiple function, then we can see how we can use the shared terms that could be there

amongst multiple functions. And during realization, when we are doing the minimization

due to finite  propulsion delay, there  could be glitches  that  can occur  and during the

transition from one particular value to another and such potential glitch in a circuit gives

rise to hazard and to cover hazard, we need to we need to include additional terms which

is otherwise considered redundant. So, this is briefly what we discussed in the last week. 



(Refer Slide Time: 02:22)

So, to discuss multiplexer we look at a truth table which is which is you know converted

to a Karnaugh map realization which is what you see over here. This is something that

we have seen before very simple ok. 

The truth table is like this and what is this truth table saying? If when A is 0; when A is 0

right. So, the output here, output here follows C. You can see 0 0 C is 0; Y is 0; C is 1; Y

is 1 as long as A is 0 and when A is 1 output follows B. So, this is 0; this is 0; this is 1

and  this  is  1;  very  simple  truth  table  corresponding  Karnaugh  map  and  this  is  the

realization  and  corresponding  hardware  realization,  converted  this  particular  logic

equation is what you see over here.

Now, this  one  can  be  seen  in  a  different  way;  the  way  we  look  at  the  you  know

algorithms. So, if A; if A means if A is true that is if A is equal to 1; then Y is equal to B.

Is not it? If A is equal to 1 this term becomes 0 dot C which is 0 and this term becomes 1

dot B which is B. So, Y is equal to B. So, you can write this way when A is equal to 1 ok;

Y is equal to B right. Else means when A is not equal to 1; the other option this is a

binary you know possibility of 0 and 1 only is there for the variable A. ok. 

So, when A is 0. So, what we see this is 0 1 dot C and this is 0 dot B ok. So, in that case

the output is only C. So, for A is equal to 0 output is C. So, we can write the truth table in

this manner also and this is corresponding you know meaning in terms of the codes that

we write for algorithms ok.



(Refer Slide Time: 04:48)

Now, how is  it  related  to  multiplexing  operation?  So  for  that,  we define  what  is  a

multiplexer? Multiplexer steers one of the many inputs; one of the many inputs to an

output based on what the control input says ok. This is what is the job of a Multiplexer.

So, here there is an example where which is doing a 2 to 1 multiplexing; that means, 2

inputs are there and 1 output is there. We shall see example of you know 4-to-1 and 8-to-

1 and other things. 

So, this is the transmission line say and these inputs is not required to transmit every

point of time. So, when at certain point of time D 0 wants to transmit; at some other

point of time D 1 wants to transmit. So, there is no need of putting a dedicated channel

for each of D naught and D 1 because this channel is very long it according to the cost

gets increased. So, here 1 channel can be used by D naught and D 1 depending on the

need and how it is decided, who will take control over the transmission channel that is

the Y. It is decided by S naught.

So, when S naught is 0 D naught you know gets connected to Y and when S naught is

equal to 1, D 1 gets connected to Y. So, that is the idea. Is it ok? So, if there are 4 such

things, then there will be 4 such inputs and then, the select lines will be accordingly

which we shall see later right. So, this particular thing and what we just discussed in the

previous slide, you can see there is a similarity. So, here what we are looking at? In this

case you are looking at a an expression which is something like this. So, S naught is



equal to 0; Y is equal to D naught and when S naught is equal to 1, Y is equal to D 1.

This is similar to this relationship ok. 

So, the same circuit in which what we had seen for A, if we assign that to S naught that is

the select input and B and C becomes data inputs which is given to D 1 and D naught

respectively. Then the previous circuit behaves like a 2 to 1 multiplexer ok, where A is

your S naught; D naught is your C and D 1 is your B ok. The same circuit, the same

hardware realization that you had seen and then, we can represent it in the form of a

block ok. So, this is the block within which that hardware, the hardware that we had seen

before is there 2 AND gate and 1 OR gate. So, this S naught when it is 0, this is the

control input D naught is actually getting connected to Y; when S naught is equal to 1 D

1 is getting connected to Y right.

So, that is the idea and this is the way a simplified block level representation is made and

we can make use of this block in subsequent discussion. Knowing that inside the block

there is a the hardware that we had seen before with 2 input 2 and gate and 1 or gate that

is what makes it 2 to 1 multiplexer.

(Refer Slide Time: 08:14)

Now,  we  look  at  4-to-1  multiplexer.  So,  4-to-1  multiplexer  as  per  our  previous

understanding, there will be 4 data inputs D naught, D 1, D 2, D 3. This is the way we

designate them and this is one output right and 1 of them will get access to Y depending

on the selecting lines. Again, this S 1 and S naught are binary variables. So, for selecting



4 of them, we need 2 of them; 2 of 2 select lines. So, in S 1 and S naught are 0 and 0, D

naught is getting selected; that means, Y is equal to D naught right. When they are 0 1, D

1; when 1 0, D 2 and when 1 1, this is D 3 ok. So, how do we write it in the form of a

logic equation?

So, this is the way we can write it right. So, when we substitute S 1 and S naught as 0

and 0 both of them are 0. So, this is 0 prime that is 1. This is 1; this is D naught and rest

of the term one of S 1 or S naught we will for 0 for being 0 will generate the 0. So, plus 0

plus 0 plus 0 ok. So, Y is nothing but D naught. So, for S 1 is equal to 0 and S naught is

equal to 1. This is the term associated with D 1 which will be the value of Y and the

other terms will be this term, this term, this term; this 3 term will be 0. This is how we

can write the expression ok.

And the corresponding hardware is what you see over here. So, S 1 and S naught right.

So, amongst them this 4 possibilities are there. So, 3 input AND gates;  these are the

selections. This is D naught, D 1, D 2, D 3. So, if it is 0 0. So, this is 0; this becomes 1;

this becomes 1 and this is D naught. So, Y is equal to D naught at that time and rest of

the values these and gates at that time will be 0 only. This is D naught ok, for S 1 and S

naught at 0. So, similarly for other values also you can take and you can see that the

output is in the following this particular truth table ok.

So, 4-to-1 multiplexer, when we give a block diagram representation; so this is the block

diagram representation 2 select inputs S 1 and S naught and 4 data inputs. These are the 4

data inputs and there is 1 output and 2 select inputs. The first one is S 1 and second one

designates S naught ok. So, 0 0 0 1 1 0 and 1 1 and corresponding inputs are you know

assigned here and this is getting connected to Y depending on the S 1 and S naught value.

So, what is there inside this block? This hardware is there ok. This hardware is there, this

particular logic circuit is there right. So, when we us this as a block we know that inside

this is the logic circuit that is there clear.



(Refer Slide Time: 11:28)

 Now, let us look at the 4-to-1 multiplexer equation a bit you know closely. So, this was

the basic equation, we had seen before. Now, if we take S 1 prime common between

these two right. So, we get S naught time D naught, S naught D 1. And if we take S 1

common between these two; we get S 1 out and S naught time D 2 and S naught D 3

within the bracketed term. Now if you look closely at this two, this particular term, this

particular  two  terms  you  know  SOP  term.  What  is  it?  It  is  nothing  but  a  2-to-1

multiplexer equation and what it this? This is also a 2-to-1 multiplexer.

So, basically you have got this realized by a 2-to-1 multiplexer and this is realized by

another 2-to-1 multiplexer and if we write this particular function as F naught and this

one as F 1 you have got S 1 time F naught and S 1 F 1 and this again [ laughter] is a 2-to-

1 multiplexer equation, where F naught is your D naught and F 1 is your D 1, the basic

equation if you remember ok. So, essentially in the 4-to-1 multiplexer if you see right,

there is a there is 1 2-to-1 multiplexer; 1 2-to-1 multiplexer and finally, another 2-to-1

multiplexer.

So, three 2-to-1 multiplexers are there. So, if we you know write it the terms of 2-to-1

multiplexer. So, this is how what we can see this particular equation getting manifested

in the form of you know hardware realization inside you have got 2-to-1 multiplexer

circuit, the way we have seen before ok. So, when S 1 is say 0 and S naught is 0, what is

happening? S 1 0 means F naught is selected at the output and when S naught is 0, D



naught is selected as F naught ok. So, at that time then when S naught is 0, this is D

naught is  your F naught;  F naught equal  to D naught and Y is equal  to F naught is

nothing but D naught.

(Refer Slide Time: 13:58)

So, this line will be; this line will be going there and if it is instead S 1 is 1 and S naught

is 0 F 1 is 1 here. This line will be selected F 1 will be selected S naught is equal to 0

means, this 1 will be selected. So, F 1 will become D 2 at that time right and Y will

become F 1 equal to D 2. So, basically you are having this line going to output for S 1 is

equal to 1 and S naught equal to 0. Is it clear? 



(Refer Slide Time: 14:36)

So, we can see that this way higher order multiplexer can be obtained from lower order

multiplexer in a; so, there is a generalized you know approach for this. So, this the earlier

one was 4-to-1 multiplexer was obtained from 3 2-to-1 multiplexer. Now let us look at

the  example  of  getting  8-to-1  multiplexer  from lower  order  multiplexers.  So,  8-to-1

multiplexer how many selective inputs will be there? 8 inputs. 

So, selective inputs will be with 3 selective inputs. We can get 2 to the power with 3

selective inputs, we can get 2 to the power 3 up to 8 input line getting selected and

getting connected to the output steer to the output right.  So, 3 inputs are 3 selective

inputs are there and these are D naught to D 7 these are the data inputs and the S 2, S 1, S

naught that is the 0 0 0. So, this is the corresponding data input D naught is getting

connected to where they are 0 0 0. So, any other value say 1 0 1 1 0 1. So, D 5 will get

connected to Y. So, this is the understanding right.

And how we can get it; get 8-to-1 multiplexer from lower order. So, we can have 2 4-to-1

multiplexer. We can have 2 4-to-1 multiplexer, the similar way you have expanded the

equation  before  you  can  you  know go  with  the  same  exercise.  So,  this  is  1  4-to-1

multiplexer and this is another 4-to-1 multiplexer with S 1 and S naught right which is

generating F naught or F; F naught and F 1 2 functions and S 2 is a 2-to-1 multiplexer

which is selecting which of this F naught or F 1 will be going to the output and F naught

and F 1 will take 1 of these input values depending on S 1 and S naught that is there. So,



again we take the example of S 2, S 1, S naught 0 0 0. So, S 2 0 means F naught will be

selected right and S 1 S naught 0 0 means D naught will be selected right. So, this is the

path that will be there. 

So, if we take an example of S 2 S 1 S 0 as 1 0 1 what will happen? S 2 equal to 1. So,

basically F 1 will be selected; this 1 will be selected as going to the output right. So, Y is

equal to F 1 will be there and this is 0 1; S 1 is this is 0 and this is 1 ok. So, 0 1 is this is

the 1; D 5 will be selected. So, F 1 will become D 5. So, Y is equal to F 1 is equal to D 5.

So, D 5 will go to the output, absolutely no issue. So, this is what you can see happening

when you have got you have got higher order multiplexer realized by lower order.

Now, imagine a situation where, you have got in the store only 4-to-1 multiplexer; you

do not have 2-to-1 multiplexer right. So, can we realize it? Of course, because we can

always get a lower order multiplexer from a higher order. Getting higher order from

lower order, we have to follow a cascaded approach stage by stage approach even that

we have seen. Now to get a lower order from higher order. So, this is one example where

we are getting a 2-to-1 multiplexer from a 4-to-1 multiplexer. What we are doing? So,

there are 2 select inputs. It is made I have made common.

So, S 2 is connected over here. So, whenever we place 0, both the select inputs become 0

ok. So, this will be selected and when you know we place 1. So, this 2 become 1. So, 1

you know this, this one will be selected. So, either this gets selected or this gets selected

right. So, either this one goes to the output or this input goes to the output. So, this is

nothing but 2-to-1 multiplexer; one of this two going to the output. So, you can replace

this block with this one and accordingly, you can get the a 8-to-1 multiplexer using only

4-to-1 multiplexer, otherwise 2 4-to-1 multiplexer 1 2-to-1 multiplexer is sufficient.



(Refer Slide Time: 19:19)

Now, in the previous example we had seen 2 4-to-1 multiplexer getting connected to 1 2-

to-1 multiplexer to give you ultimately a 1 8-to-1 multiplexer and before that we had

seen that 4-to-1 multiplexer can be obtained by 3 2-to-1 multiplexer. So, this is 1 4-to-1

multiplexer that we have seen before which we can replace with 3 2-to-1 multiplexer and

this is another one which can be replaced with another 3-to-1 multiplexer. So, this is

essentially a 4-to-1 multiplexer ok.

And finally, this is a 2-to-1 multiplexer. So, how ultimately how many 2-to-1 multiplexer

we can use to get the 8-to-1 multiplexer 1 2 3 4 5 6 7. So, with 7 2-to-1 multiplexer, we

can get 1 8-to-1 multiplexer realized ok. So, this is one thing that we can take note of that

we can go up to that level. We can further break a 4-to-1 multiplier to 2-to-1 multiplexer

and realize it ok.

And this is one example where a 32-to-1 multiplexer is obtained from a from 16-to-1

multiplexer  and  2-to-1  multiplexer.  So,  2  16-to-1  multiplexer  are  there,  they  are

generating 2 output like D 1 that is they are before and 1 2-to-1 multiplexer is combining

these 2 outputs and is generating an output. So, these are different examples by which I

hope it is clear from to you that how higher order multiplexer  can be obtained from

lower order and also we have seen how lower order can be obtained from higher order

ok.



(Refer Slide Time: 21:14)

Now, we shall look into Shanon’s Expansion Theorem and it is use in the multiplexer

you know design.

(Refer Slide Time: 21:19)

So, Shanon’s Expansion Theorem, we this is we are revisiting it we have seen it before

ok. So, Shanon’s expansion theorem, this is the one remember this one. So, given any

function F X 1 this is the number of variables, I mean it could be 3 variable for variable

to variable, I mean just it is generalized expression. So, X 1 prime so, corresponding

term X, wherever X 1 is there it becomes 0 ANDed with the function X 1 prime replaced



by 0 plus ored with X 1 and the function wherever X 1 is there, you replace it with 1

whatever comes up. So, you just simply sum these 2 particular products, you get the

original function.

So, this is Shanon’s expansion theorem which you have seen before. Now in the 2-to-1

multiplexer, you know context we can see if this is my X 1 and this is select input for 0,

one will go; for 1 the other will go as output. So, if this is my Y; this is Y, then if X 1 is 0.

This is the term that is going. This is my corresponding D 0 equivalent to D 0 and when

X 1 is equal to 1, this one will go to the output because X 1 is equal to 1 means this term

will become 0; the top term will become 0 ok. So, the output will become this particular

expression ok, which was given before. 

So, there is a inherent if then else, if X 1 then X 1, X 2, X 3 to X n. This particular

function and if not X 1, else that is then F 0, X 2, X 3 to X n. Then this particular

expression will be the function output. This is similar to the multiplexing action that we

see and this we can look at, we can put it into the basic multiplexers 4-to-1 multiplexer

equation and for S 1 taken out as X 1 wherever S 1 is appearing we can put 0 0 0 0 and

the other one S 1; this was S 1 prime wherever S 1 is there, we put 1 1 1 1 and then, we

simplify  we see  that  we get  back to  what  we had seen  before.  So,  this  is  1  2-to-1

multiplexer  equation  giving F naught  and this  is  another  2-to-1 multiplexer  equation

giving  F  1  and  finally,  these  2  are  getting  combined  this  is  your  the  third  2-to-1

multiplexer. 

So, similar and exactly similar to what we had seen earlier and we also note that the

Shanon’s expansion theorem can be nested. So, first you take X 1 out. So, whatever you

get this specific this specific equation you can take X 2 out right. So, by which you can

write  this  expression  and  the  other  expression  and  similarly,  you  can  look  at  this

expression. This expression sixth one you can take X 2 out X 2 prime here and X 2 over

here. So, this one wherever X 2 appears. In this case one X 2 prime is taken out. 

So, 0 will be there when X 2 is there X 1 will be there. This is the nested version of the

Shanon’s  Expansion  Theorem  which  you  have  seen  before  and  so,  this  is  equally

applicable over here right and if you do that'; if you do that the earlier 8-to-1 multiplexer

realization the one that we had seen using 2-to-1 multiplexers right, by nesting we can

see  is  shown in  this  particular  diagram.  So,  this  is  your  F  A,  B,  C right,  the  basic



equation, A is your select input. So, whenever A is 0 right, this one is going as the input

and whenever A is 1, this one is the input right.

Now, this F 0 B C this is the output of another 2-to-1 multiplexer. So, whenever this is

the B wherever B the first one whenever B is equal to 0, we put F 0 0 C will be the input

and whenever A B is equal to 1 F 0 1 C will be the input ok. Similarly there will be the

other line. And finally, this F 0 0 C, if C is taken as the select input out. So, this 0 0 terms

are there so, C is equal to 0 is this term and C is equal to 1 is this term. So, accordingly

we have this 8 possibilities; these 8 possibilities F 0 0 0 to F 1 1 1 is over here and the

individual output that are generated at every level this follows the Shanon’s expansion

theorem, the nested version which we had seen in each of the cases and this we can see

over here also right and for any value A B C we have already noted this particular term. 

So,  if  we  have  a  function  that  we  want  to  realize  using  this  particular  you  know

multiplexing architecture. So, this is A B C and this is say this is the corresponding truth

table. So, wherever there is a 1 in the truth table right; so, if A B C F 0 0 0; so, this is F 0

0 0 right. So, if there is a 1; so there is a 1 over here. So, we put the corresponding D

naught value as 1 0 0 1, so this is the corresponding term we see the truth table out in this

particular place is 0. So, this is my corresponding input ok so, we put D 1 as 0 ok. 

So, this shows that using multiplexer, we can realize the truth table. So, inside this is

what this whole block this whole block is a 8-to-1 multiplexer. We have realized it in this

manner, but effectively this is a 8-to-1 multiplexer. So, if input to that is F 0 0 0 to F 1 1

1 over here ok. This can map to the truth table by appropriately placing the values of D 1,

D 2, D 3 upto D 7 ok; making them zeros and ones as per the truth table (Refer Time:

28:20) we have seen it. More of this, we will see in the next class of the multiplexer. 



(Refer Slide Time: 28:31)

So, to summarize a multiplexer steers one of the many inputs to an output based on

control inputs, n control inputs can select up to 2 to the power n data inputs and steer it

towards  the  output.  Higher  order  multiplexer  can  be  obtained  from lower  order  by

cascading. Lower order multiplexer can be obtained from higher order by appropriate

connection  of select  inputs.  Shanon’s expansion theorem and its  inherent  if-then-else

structure is useful in getting insights of multiplexer operation.

Thank you.


