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Hello everyone. Welcome to the course on Architectural Design of ICs. So, today we will see

the FFT Architecture. So, FFT means the Fast Fourier transform. This is one of the most

commonly used blocks in, this in mainly for the digital signal processing. So, it has the wide

application like in image processing or in wireless communication or in video processing. 

So, to design the hardware for let us say for video processing or for audio processing or for

image processing you need to design the FFT block ok. So, for that reason you have to know

about the FFT architecture. So, today we will see, in these particular lecture we will see the

FFT architecture what are the architectures are already there and still people are trying for

several decades to design one efficient architecture for a fast Fourier transform. 

That means why I need this efficient means actually some of the architecture is related to

increase the;  that  means,  the computation time or sorry,  not;  that  means,  to decrease the

computation time so that the throughput of the FFT becomes much more on the higher side;

that means, we can process it very faster. 

As well as some of the architecture has basically designed with respect to; that means, for the

low power application so as a FFT means we have to actually there the memory access is

much more so, how to reduce these memory access. So, that it can become or this will be

much more applicable for low power applications. 

So, those types of architectures are already there. So, various kinds of architectures is already

available, but we will see just the basics or the; that means, very few basic architecture of a

FFT in these particular; that means, lecture series.

If you want to know more; that means, if you are more interested on FFT architecture the

present days you can find it in IEEE website or you can find it in; that means, Google scholar.

Or if you; that means, if you and if you are not getting it then please let me know then I will

definitely I provide the corresponding information about the recent days FFT architecture,



how the people have already developed or still  people are basically trying to develop this

high performance, highly efficient FFT architecture ok.

(Refer Slide Time: 03:14)

So, at the first actually we have to consider these Fourier transform which came for digital

signal passing is these discrete Fourier transform. So, this is the; that means, equation for

these generic discrete Fourier transform. 

So, whenever we in actually it  the Fourier transform has been started with these discrete

Fourier transform, and whenever the people have tried to design this DFT. So, at the time the

baseline for these computational the hardware requirement;  that means, the computational

complexity of these DFT requires, N complex multiplication and N minus 1 complex addition

for 1 N point DFT. 

In all N DFT coefficients requires N squared number of complex multiplications and N into

N minus  1  number  of  complex  additions.  So,  therefore,  the  complexity  in  terms  of  real

operations it requires 4 N square number of real multiplication and 2 N into N minus 1 real

addition. 

What does it means is that, to implement this particular function suppose for N point DFT I

need the computational overhead; that means, their hardware requirement for these to design

1 N point DFT the requirement is 4 into N square. Let us say if I want to design one 8 point



FFT so at that time so 8 square means 64 into 4 so, 256 number of real multiplications I need,

as well as. So, 56 into 2 means 112 number of real additions operation I require. 

So, if I consider that 8 point FFT and the FFT lengths of each of this 8 bit so at that time it

requires a huge number of hardware requirements ok.  So, these as we actually  use more

number of hardware; that means, more number of multipliers and more number of addition

operation so at the time this will consumes more power as well as the speed will be also on

the lower side.

(Refer Slide Time: 05:54)

So, that is why people have actually in the earlier days the DFT actually it has been done in

decimation time. So, in decimation time we have just divide the DFT into two part where the

half of these is basically done considering these N by 2 point DFT and the lower portion is

done by N on N by 2 point DFT ok.

Now, the thing is that after actually dividing these coefficients into even and odd we can do

these butterfly  operations,  which is  basically  related to  the corresponding twiddle  factors

multiplications. This is very much related to this particular term which is e to the power j 2 pi

by N into k n. 

So, now for these 2 N by 2 point DFTs we need 2 into N by 2 square number of complex

multiplication as well as 2 into N by 2 number of 2 square number of complex addition. So,

combining these two; that means, DFT outputs we can get; that means, which requires total



number of N complex multiplication as well as N complex addition. So, the total complexity

at that time it becomes N square by 2 plus N number of complex multiplication and N square

by 2 plus N number of complex addition.

So, now in these particular case if we consider that ok, we need; that means, 8 point FFT if

again we consider so at that time 32 plus 8. So, 40 number of complex multiplication we

require if we actually divide the coefficient; that means, if we divide these the corresponding;

that means, sample in even term and then odd term and both if we do the; that means, if we

run  these  computation  of  the  DFT in  parallel  so  at  that  time  the  requirement  for  these

complex multiplication and complex addition they become little bit lower than the original

DFT implementation ok. 

So, actually this is, if we consider only about; that means, radix 2 radix 2 means as we have

only read if  only divided 2 part;  that  means,  the even part  and then the odd part.  If  we

increase the radix; that means, if we consider 4 parallel DFT which is running at N by 4 point

DFT so at that time the corresponding computation time that will be much more faster ok. 

So,  we  will  see  how  these  actually  the  computation  time  at  that  time  becomes  lower

whenever we consider more of the radix and if we consider more of the radix then what also

it; that means, what it happens then that we will also; we will also see. 

(Refer Slide Time: 09:25)



Now, depending on these 4 point where the radix 4 DFT in decimation in time what we can

do is that, we have in these particular  N by 4 point DFT what we have considered we have

considered x 0 x 4 x 2 x 6 x 1 x 5 and x 3 x 7. Then they are being basically here we are

doing  these  butterfly  operation  which  is  nothing,  but  these  twiddle  factor  multiplication

which is coming because of these e to the power j 2 pi by N because of this that particular

factor.

So, whenever we will do at that time that corresponding functions it will give you two parts

one is the real part another one is the imaginary part ok. So, in these butterfly operation you

can see that this these particular actually node is multiplied with the coefficient values of 1

and these particular actually branch or these particular edge is basically multiplied with the

term of minus 1 ok. So, these values of 1 and minus 1 they are being calculated or computed

based on the corresponding twiddle factors ok.

(Refer Slide Time: 10:58)

So, now and these will be actually repeated until and unless we are getting these 2 point

DFTs. So, this is another example of this decimation in time these Fast Fourier transform and

basically  fast Fourier transform is nothing, but these division of these N by 2 point;  that

means, DFT. In that means, if we divide these two; that means, odd part and the even part and

then if we run them on parallel computation that is the, and by that technique we increase the

computation;  that  means,  we increase  the  throughput  of  the  Fourier  transform,  which  is

nothing, but this fast Fourier transform. 



And whenever we do like these so at that time the complexity becomes N into log 2 base N

number of complex multiplication and addition well, what is this N? N is nothing, but the

corresponding number; that means, the point; that means, N point DFT or N point FFT what

we require. So, in these particular case as we have considered 8 point; that means, FFT so at

that time the corresponding complex multiplication and the addition requirement will be 8

into log 2 base N equals to; that means, 24 number of complex multiplication and addition

operation.

And here you consider each of these is basically requires these multiply and accumulation;

that means, operation. 

(Refer Slide Time: 12:38)

Now, what is these butterfly computation? So, the butterfly computation is that it actually

generates from the m minus 1 stage, it  has to multiply it  with the corresponding twiddle

factors to generate the next stage, which is the m th stage ok. So, in these upper ward actually

this upward; that means, branching it has to multiplied with W dash W r N whereas, this

lower branch has to multiply with the twiddle factor values of W N r plus N by 2. 

So, what we can do this upper branch will be actually depending on the this value if we know

the N so at the time we know what will be the values of these W N and W N r plus N by 2.

So, from there we can we know that these lower branch will be this value of these will be

minus 1 and these value will be the 1. So, the final actually complexity for decimation in time



FFT will be if we consider this kind of butterfly computation so at that time it will be N by 2

into log 2 base N complex multiplication and addition operation.

So; that means, in the earlier case in these case we are having 8 into 3 for 8 point FFT so 24

number of complex multiplication and addition operation so if we just constitute this butterfly

unit and if we use these corresponding these the twiddle factors values as 1 and minus 1. So,

at that time the requirement for this multiplication complex multiplication and these addition

will become 4 into 3 means only 22 sorry, only 12 at that time. 

(Refer Slide Time: 14:41)

So, in decimation in time flow graphs require two sets of registers one for the input and other

for the output for each stage. And note the arrangement of the input indices are in bit reversed

in indexing. 

Bit reverse indexing, means; the output the if I apply these input at x 0 x 1 x 2 x 3 x 4 x 5 x 6;

that means, this is the input sequence the output from this decimation in time FFT the output

will become in a bit reverse manner which is nothing, but this x 0 then x 4 then x 2 then x 6

then x 1 then x 5 then x 3 then x 7 something like these; that means, 0 this will. 



(Refer Slide Time: 15:38)

So, these decimation in; that means, FFT algorithm. So, this is the initial DFT equation. Now

if we split this DFT equation into even and odd indices; that means, frequency indices then

these particular equation can be written as n 0 to N by 2 minus 1 summation of these n 0 to N

by 2 minus 1. Where x n into W N into n 2 to 2 r whereas, the; that means, this is the even

part and this is the odd part; that means, the DFT now it has been split into two. So, that I can

run parallelly ok.

(Refer Slide Time: 16:29)



So, then this the corresponding graph for this decimation in time sorry, decimation in this is.

The earlier  one was the decimation in time so this is for decimation in frequency. So, in

decimation in frequency what we have to give is that the input should be in the in order

whereas, I will get the corresponding output in the bit reversed manner. So; that means, this is

not the act, so x 0 is producing x 0 the x 1 is then its producing x 4, x 2 is producing x 2, x 3

is producing x 6, x 4 is producing x 1 so something like that the output will come comes in

the bit reverse manner. 

So, at the time to get the output should be also like x 0 x 1 x 2 x 3 x 4 x 5 something like that.

So, you have to do some bit reversing; that means, you have to do the bit reversal so that

these particular sequence became in order ok.

(Refer Slide Time: 17:45)

So, in decimation in time actually then this DITs; that means, decimation in time structure

with the input bit reverse the output will be natural; that means, if we apply the input in a bit

reverse manner which is these x 0 x 4 x 2 x 6 x 1 x 5 x 3 x 7 so at that time the output will be

comes in the bit reverse manner. 

So, it; that means, you can do in; that means, in either you can put either you can give the

input in the original sequence you get the output at the bit reversed manner or you put the

input in the bit reverse manner. So, that the output would comes out from these that FFT

block which will be in original or in original sequencing or in particular order ok. 



So, and here you see all these; that means, these particular the lower branch they are basically

multiplied these, butterfly these cross multiplication is known as the butterfly operation so the

butterfly lower branch of these butterfly they are being multiplied with minus 1 whereas, the

upper branch has been multiplied with positive 1. 

(Refer Slide Time: 19:14)

Now,  whenever  these  in  so  this  is  in  decimation  in  time  and  in  case  of  decimation  in

frequency the input is in original sequence, but the outputs are coming in bit reverse manner.

So, here you see the difference is that initially actually we do these; that means, the radix 2

butterfly ok. And then actually it has to multiplied with initially the x 0 with x 4 then x 2 with

x 6 x 1 with x 5 x 3 with x 7.

Then in the next these x 3 x 1 x 7 x 5 so it has to multiply with that, then again this x 1 has to

multiplied with x 0 x 5 we has to multiply with x 4 x 3 has to multiplied with x 2 so x 7 has to

multiplied with x 3 ok. So, which will be just reversed in case of decimation in frequency ok.



(Refer Slide Time: 20:29)

So, in decimation in frequency case so that the initial computation will be x 0 with x 4 then x

1 with x 5 x 2 with x 6 x 3 with x 7 and then we will get the corresponding output something

like this. 

(Refer Slide Time: 20:48)



(Refer Slide Time: 20:51)

So, the decimation in frequency FFT algorithm it has to; actually this is a method to avoid;

that means, what method we will adopt to avoid these bit reversal in filtering operation is to

compute the forward transform using natural input and bit reverse output. And these multiply

these DFT coefficients of input and filter response. Compute these inverse transform of the

product using bit reversed input and the natural output. 

(Refer Slide Time: 21:33)

And, now so whatever we are considering that is only for the forward DFTs or forward FFT

we have only considered, but what about the inverse FFT ok?.



(Refer Slide Time: 21:55)

So, what will happen if we design the I FFT block? So, at that time how we can do; that

means, how we can modify the FFT code so that it becomes the inverse; that means, inverse

fast Fourier transform ok. So, what we can do is that at that time it will be just 1 by N into k;

that means, k 0 to N minus 1 with x convolution with these W N into N base k n ok.

(Refer Slide Time: 22:34)

So, how we can basically design the hardware for this is that. 



(Refer Slide Time: 22:47)

So, actually this is yes. So, here you see initially what we are considering is that we are

considering N point 2 DFT and then we are multiplying these with each of these twiddle

factors. 

Now here in decimation in frequency FFT algorithm so what we have done is that we have

initially we have done these x 0 multiplied with x 4 x 1 multiplied with x 5 x 2 multiplied

with the x 6 x 3 multiplied with x 7. And then each of these in the next step we are having

these N by 2 point DFT and here we are having N by 2 point DFT which basically generates

these x 0 x 2 x 4 x 6 and here x 1 x 3 x 5; that means, all these odd even part here from here

and even sorry, odd part from the lower DFT ok.



(Refer Slide Time: 23:47)

So, then the same things using; that means, N by 4 point DFT also we can easily compute,

just it is just the reverse case of the; that means, these fast Fourier transform what we have

already seen.

(Refer Slide Time: 24:11)

So,  the  decimation;  that  means,  this  actually  the  DIT  butterfly  if  you  see  actually  it

corresponds with this  x  0 and x 4 whereas,  this  decimation  in  frequency they are  being

multiplied  with;  that  means,  in the.  Here we are considering the input  in  the bit  reverse



manner, but here sorry, here we are considering in the original sequence, but here we have to

consider the inputs in the bit reverse manner ok.

(Refer Slide Time: 24:47)

So,  this  is  the corresponding decimation  in time FFT structure  and this  is  decimation  in

frequency structure so here you see here we are considering x 0 x 4 x 2 x 6 x 1 x 5 x 3 x 7,

but here the inputs are already in sequence. So, the major difference is that, whatever we are

getting that with inputs are bit reverse manner in case of decimation in time the outputs are in

the original sequence just the opposite in decimation in frequency the inputs are in the order,

but the outputs are in bit reverse manner.

So, by seeing this I can say I can say or that the corresponding FFT architecture whether that

is following decimation in time or decimation in frequency. 



(Refer Slide Time: 25:42)

So, this is another actually alternate FFT structure, this is the basic FFT structure what people

have designed in the earlier days of FFT computation ok.

(Refer Slide Time: 25:57)

So, in all  these case we have already know that  in  decimation  in frequency the input  in

decimation in frequency the input should be in the corresponding original sequence. 



(Refer Slide Time: 26:25)

Now, so whenever we suppose consider one 6 point decimation in time FFT. So, at that time

what will happen? So, initially in the earlier example we have considered that 8 point FFT,

but you now if we consider these 6 point FFT so at that time what will happen we have to

consider these this x 0 x 2 x 4 whereas, the odd part are x 1 x 3 x 5. 

So, this x 0 is multiplied with x 2 and then this again it is multiplied with x 4 here x 1 is

multiplied with these; that means, it is the, but come it is the butterfly operation with the x 3

and it is the butterfly operation with the x 5. And we give the input in the bit reverse manner

we get the output in the original sequence ok.



(Refer Slide Time: 27:25)

So, this is the; that means, this decimation in time fast Fourier transform architecture. Now,

actually  whenever  we have to design these particular  circuit  so at  the time the hardware

implementation this is the just that the flow of; that means, how this data flow diagram of this

fast Fourier transform. Now these I have to convert or this I have to this data flow diagram

will be implemented via some hardware. 

So, what will be the hardware or structure to implement this particular data flow diagram of

this fast Fourier transform that we will see in the next lecture.

So, thank you for today’s lecture. 


